精英家教網 > 高中數學 > 題目詳情
14.曲線M的方程為$\sqrt{{{(x-1)}^2}+{y^2}}+\sqrt{{{(x+1)}^2}+{y^2}}$=4,直線y=k(x+1)交曲線M于A,B兩點,點C(1,0),則△ABC的周長為8.

分析 直線經過定點(-1,0),由橢圓定義,轉化求解△ABC的周長即可.

解答 解:曲線M的方程為$\sqrt{{{(x-1)}^2}+{y^2}}+\sqrt{{{(x+1)}^2}+{y^2}}$=4,可知(±1,0)是橢圓的焦點,由橢圓定義知:2a=4,直線y=k(x+1)過定點(-1,0),
由題設△ABC的周長為AB+BC+AC=4a=8,
故答案為:8.

點評 本題考查橢圓的定義,直線經過定點問題,直線和圓錐曲線的關系,利用橢圓的定義是解題的關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

4.已知冪函數y=f(x)的圖象過點(2,8),則它的解析式為y=x3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.在△ABC中,角A、B、C、所對的邊分別為a、b、c,且$\sqrt{3}$asinB-bcosA=0,
(1)求角A的大;(2)若a=1,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知數列{an}是等比數列,首項a1=1,公比q>0,且2a1,a1+a2+2a3,a1+2a2成等差數列.
(Ⅰ)求數列{an}的通項公式
(Ⅱ)若數列{bn}滿足an+1=($\frac{1}{2}$)${\;}^{{a}_{n}_{n}}$,Tn為數列{bn}的前n項和,求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.在一個盒子中,放有標號為1,2,3的三張卡片,現從此盒中有放回地先后抽到兩張卡片的標號分別記為x,y,設O為坐標原點,點B的坐標(x-2,x-y),求|$\overrightarrow{OB}$|的最大值,并求事件“|$\overrightarrow{OB}$|取到最大值”的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.a,b,c∈R,則關于x的方程ax2+bx+c=0有一個正根和一個負根的充要條件為ac<0.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.如圖3,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分別為AB,VA的中點.
(Ⅰ)求證:VB∥平面 M OC;
(Ⅱ)求證:平面MOC⊥平面VAB;
(Ⅲ)求三棱錐A-MOC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.下面說法中正確的個數有(  )個
(1)若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$⊥$\overrightarrow$,
(2)若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow$•$\overrightarrow{c}$且$\overrightarrow$≠$\overrightarrow{0}$,則$\overrightarrow{a}$=$\overrightarrow{c}$
(3)($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$•$\overrightarrow{c}$) 
(4)($\overrightarrow{a}$•$\overrightarrow$)2=$\overrightarrow{a}$2•$\overrightarrow$2
(5)若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow{c}$∥$\overrightarrow$,則$\overrightarrow{a}$∥$\overrightarrow{c}$,
(6)$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)-$\overrightarrow$•($\overrightarrow{a}$•$\overrightarrow{c}$)不與$\overrightarrow{c}$垂直.
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.點P(-3,1)在橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左準線上.過點P的直線l:5x+2y=13,經直線y=-2反射后通過橢圓的左焦點,則這個橢圓的離心率為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步練習冊答案