【題目】某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人,為了解學(xué)生本學(xué)期課外閱讀時(shí)間,現(xiàn)采用分成抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們課外閱讀時(shí)間,然后按“初中學(xué)生”和“高中學(xué)生”分為兩組,再將每組學(xué)生的閱讀時(shí)間(單位:小時(shí))分為5組:[0,10),[10,20),[20,30),[30,40),[40,50],并分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)寫出的值;試估計(jì)該校所有學(xué)生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生人數(shù);
(2)從閱讀時(shí)間不足10個(gè)小時(shí)的樣本學(xué)生中隨機(jī)抽取3人,并用表示其中初中生的人數(shù),求的分布列和數(shù)學(xué)期望.
【答案】(1),870人 (2)分布列見(jiàn)解析,
【解析】
(1)根據(jù)頻率頻率直方圖的性質(zhì),可求得的值;由分層抽樣,求得初中生有60名,高中有40名,分別求得初高中生閱讀時(shí)間不小于30小時(shí)的學(xué)生的頻率及人數(shù),求和;
(2)分別求得,初高中生中閱讀時(shí)間不足10個(gè)小時(shí)的學(xué)生人數(shù),寫出的取值及概率,寫出分布列和數(shù)學(xué)期望.
解:(1)由頻率分布直方圖得,,
解得;
由分層抽樣,知抽取的初中生有60名,高中生有40名.
因?yàn)槌踔猩,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生頻率為,
所以所有的初中生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生約有人,
同理,高中生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生頻率為,學(xué)生人數(shù)約有人.
所以該校所有學(xué)生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生人數(shù)約有450+420=870人.
(2)初中生中,閱讀時(shí)間不足10個(gè)小時(shí)的學(xué)生頻率為,樣本人數(shù)為人.
同理,高中生中,閱讀時(shí)間不足10個(gè)小時(shí)的學(xué)生樣本人數(shù)為人.
故X的可能取值為1,2,3.
則,
,
.
1 | 2 | 3 | |
所以的分布列為:
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;
(Ⅱ)若與平行的直線與曲線交于,兩點(diǎn).且在軸的截距為整數(shù),的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為雙曲線:的一個(gè)焦點(diǎn),過(guò)作的一條漸近線的垂線,垂足為點(diǎn),與的另一條漸近線交于點(diǎn),若,則的離心率為( )
A.2B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,過(guò)點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為,且與短軸兩端點(diǎn)的連線相互垂直.
(1)求橢圓的方程;
(2)若圓上存在兩點(diǎn),,橢圓上存在兩個(gè)點(diǎn)滿足:三點(diǎn)共線,三點(diǎn)共線,且,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,四邊形是菱形,,,E是上一點(diǎn),且,設(shè).
(1)證明:平面;
(2)若,,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三棱柱柱中底面邊長(zhǎng)為2,高為3,DE分別在與上,且.
(1)AE上是否存在一點(diǎn)P,使得面?若不存在,說(shuō)明理由;若存在,指出P的位置;
(2)求點(diǎn)到截面ADE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓.
(1)若橢圓的離心率為,求的值;
(2)若過(guò)點(diǎn)任作一條直線與橢圓交于不同的兩點(diǎn),在軸上是否存在點(diǎn),使得, 若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)生考試中答對(duì)但得不了滿分的原因多為答題不規(guī)范,具體表現(xiàn)為:解題結(jié)果正確,無(wú)明顯推理錯(cuò)誤,但語(yǔ)言不規(guī)范、缺少必要文字說(shuō)明、卷面字跡不清、得分要點(diǎn)缺失等,記此類解答為“類解答”為評(píng)估此類解答導(dǎo)致的失分情況,某市教研室做了項(xiàng)試驗(yàn):從某次考試的數(shù)學(xué)試卷中隨機(jī)抽取若干屬于“類解答”的題目,掃描后由近百名數(shù)學(xué)老師集體評(píng)閱,統(tǒng)計(jì)發(fā)現(xiàn),滿分12分的題,閱卷老師所評(píng)分?jǐn)?shù)及各分?jǐn)?shù)所占比例大約如下表:
教師評(píng)分(滿分12分) | 11 | 10 | 9 |
各分?jǐn)?shù)所占比例 |
某次數(shù)學(xué)考試試卷評(píng)閱采用“雙評(píng)+仲裁”的方式,規(guī)則如下:兩名老師獨(dú)立評(píng)分,稱為一評(píng)和二評(píng),當(dāng)兩者所評(píng)分?jǐn)?shù)之差的絕對(duì)值小于等于1分時(shí),取兩者平均分為該題得分;當(dāng)兩者所評(píng)分?jǐn)?shù)之差的絕對(duì)值大于1分時(shí),再由第三位老師評(píng)分,稱之為仲裁,取仲裁分?jǐn)?shù)和一、二評(píng)中與之接近的分?jǐn)?shù)的平均分為該題得分;當(dāng)一、二評(píng)分?jǐn)?shù)和仲裁分?jǐn)?shù)差值的絕對(duì)值相同時(shí),取仲裁分?jǐn)?shù)和前兩評(píng)中較高的分?jǐn)?shù)的平均分為該題得分.(假設(shè)本次考試閱卷老師對(duì)滿分為12分的題目中的“類解答”所評(píng)分?jǐn)?shù)及比例均如上表所示,比例視為概率,且一、二評(píng)與仲裁三位老師評(píng)分互不影響).
(1)本次數(shù)學(xué)考試中甲同學(xué)某題(滿分12分)的解答屬于“類解答”,求甲同學(xué)此題得分的分布列及數(shù)學(xué)期望;
(2)本次數(shù)學(xué)考試有6個(gè)解答題,每題滿分12分,同學(xué)乙6個(gè)題的解答均為“類解答”.
①記乙同學(xué)6個(gè)題得分為的題目個(gè)數(shù)為計(jì)算事件的概率.
②同學(xué)丙的前四題均為滿分,第5題為“類解答”,第6題得8分.以乙、丙兩位同學(xué)解答題總分均值為依據(jù),談?wù)勀銓?duì)“類解答”的認(rèn)識(shí).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校同時(shí)提供、兩類線上選修課程,類選修課每次觀看線上直播分鐘,并完成課后作業(yè)分鐘,可獲得積分分;類選修課每次觀看線上直播分鐘,并完成課后作業(yè)分鐘,可獲得積分分.每周開(kāi)設(shè)次,共開(kāi)設(shè)周,每次均為獨(dú)立內(nèi)容,每次只能選擇類、類課程中的一類學(xué)習(xí).當(dāng)選擇類課程次,類課程次時(shí),可獲得總積分共_______分.如果規(guī)定學(xué)生觀看直播總時(shí)間不得少于分鐘,課后作業(yè)總時(shí)間不得少于分鐘,則通過(guò)線上選修課的學(xué)習(xí),最多可以獲得總積分共________分.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com