.如圖5(1)是一個水平放置的正三棱柱ABC—A
1B
1C
1,D是棱BC的中點,正三棱柱的正(主)視圖如圖5(2)。
(1)求正三棱柱ABC—A
1B
1C
1的體積;
(2)證明:A
1B//平面ADC
1;
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
是底面邊長為1的正四棱柱,高
。求:
⑴異面直線
與
所成的角的大。ńY果用反三角函數(shù)表示);
⑵四面體
的體積。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖
S為正三角形
ABC所在平面外一點,且
SA=
SB=
SC=
AB,
E、
F分別為
SC、
AB中點,則異面直線
EF與
AB所成角為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)已知在直四棱柱ABCDA
1B
1C
1D
1中,底面ABCD為直角梯形,且滿足AD⊥AB,BC∥AD,AD=16,AB=8,BB
1=8,E,F(xiàn)分別是線段A
1A,BC上的點.
(1) 若A
1E=5,BF=10,求證:BE∥平面A
1FD.
(2) 若BD⊥A
1F,求三棱錐A
1AB
1F的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
關于直線a、b,以及平面M、N,給出下列命題:
①若a∥M,b∥M,則a∥b;
②若a∥M,b⊥M,則a⊥b;
③若a∥b,b∥M,則a∥M;
④若a⊥M,a∥N,則M⊥N.其中正確命題的個數(shù)為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,直二面角D—AB—E中,四
邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)為CE上的點,且BF⊥平面ACE.
(Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)求點D到平面ACE的距離。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在直四棱柱ABCD—A
1B
1C
1D
1中,已知底面四邊形
ABCD是邊長為3的菱形,且DB=3,A
1A=2,點E
在線段BC上,點F在線段D
1C
1上,且BE=D
1F=1.
(1)求證:直線EF∥平面B
1D
1DB;
(2)求二面角F—DB—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,正方
體
中,
、
分別是棱
與
的中點,則直線
與直線
所成角的大小
是
▲ .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖所示,在三棱錐C—ABD中,E、F分別是AC和BD的中點,若CD=2AB=4,EF⊥AB,則EF與CD所成的角是 .
查看答案和解析>>