關(guān)于直線a、b,以及平面M、N,給出下列命題:
①若a∥M,b∥M,則a∥b;
②若a∥M,b⊥M,則a⊥b;
③若a∥b,b∥M,則a∥M;
④若a⊥M,a∥N,則M⊥N.其中正確命題的個數(shù)為(  )
A.0 B.1C.2D.3
C
由線面平行的性質(zhì),我們可判斷①的正誤,由線線垂直的判定方法,可判斷②的對錯,根據(jù)線面平行的判定方法,我們可判斷③的真假,由面面垂直的判定方法,可以判斷④的對錯.由此即可得到結(jié)論.
解:①中a與b可以相交或平行或異面,故①錯.
③中a可能在平面M內(nèi),故③錯.
而由線線垂直的判定方法,可得②正確;
由面面垂直的判定方法,可得④正確;
故選C
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,是直棱柱,,點分別是的中點. 若,則所成角的余弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱柱中,是正方形的中心,,平面,且
(Ⅰ)求異面直線與所成角的余弦值;
(Ⅱ)求二面角的正弦值;
(Ⅲ)設(shè)為棱的中點,點在平面內(nèi),且平面,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知正方體的側(cè)棱長為2,的中點,則異面直線所成角的大小為( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖(1)是一正方體的表面展開圖,是兩條面對角線,請在圖(2)的正方體中將畫出來,并就這個正方體解決下面問題.

(Ⅰ)求證:平面;
(Ⅱ)求證:⊥平面;
(Ⅲ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,底面ABCD是矩形,側(cè)棱PA垂直于底面,E、F分別是AB、PC的中點.
(1)求證:CD⊥PD;
(2)求證:EF∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題14分)
如圖,在四棱錐V-ABCD中底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD

(1)證明:AB;         
(2)求面VAD與面VDB所成的二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.如圖5(1)是一個水平放置的正三棱柱ABC—A1B1C1,D是棱BC的中點,正三棱柱的正(主)視圖如圖5(2)。
(1)求正三棱柱ABC—A1B1C1的體積;
(2)證明:A1B//平面ADC1;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,SD垂直于正方形ABCD所在的平面,AB=1,

(1)求證:
(2)設(shè)棱SA的中點為M,求異面直線DM與SC所成角的大小。

查看答案和解析>>

同步練習冊答案