【題目】已知學校有15位數(shù)學老師,其中9位男老師,6位女老師,學校有10位數(shù)學老師,其中3位男老師,7位女老師,為了實現(xiàn)師資均衡,現(xiàn)從學校任意抽取一位數(shù)學老師到學校,然后從學校隨機抽取一位數(shù)學老師到市里上公開課,則在學校抽到學校的老師是男老師的情況下,從學校抽取到市里上公開課的也是男老師的概率是(

A.B.C.D.

【答案】A

【解析】

當在學校抽到學校的老師是男老師時,學校男老師和總老師的數(shù)量可知,進而可求得從學校抽取到市里上公開課的也是男老師的概率

學校抽到學校的老師是男老師事件為M學校抽取到市里上公開課的是男老師事件為N,

學校有15位數(shù)學老師,其中9位男老師,6位女老師,因而學校抽到學校的老師是男老師的概率為;

學校抽取到市里上公開課的也是男老師的概率為,

因而由條件概率公式可得,

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在圓上取一點,過點軸的垂線段,為垂足,當點在圓上運動時,設線段中點的軌跡為.

(1)求的方程;

(2)試問在上是否存在兩點關于直線對稱,且以為直徑的圓恰好經(jīng)過坐標原點?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為比較甲,乙兩地某月時的氣溫,隨機選取該月中的天,將這天中時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:①甲地該月時的平均氣溫低于乙地該月時的平均氣溫;②甲地該月時的平均氣溫高于乙地該月時的平均氣溫;③甲地該月時的氣溫的中位數(shù)小于乙地該月時的氣溫的中位數(shù);④甲地該月時的氣溫的中位數(shù)大于乙地該月時的氣溫的中位數(shù).其中根據(jù)莖葉圖能得到的正確結(jié)論的編號為( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個工廠生產(chǎn)某種產(chǎn)品每年需要固定投資100萬元,此外每生產(chǎn)1件該產(chǎn)品還需要增加投資1萬元,年產(chǎn)量為)件.時,年銷售總收人為()萬元;當時,年銷售總收人為萬元.記該工廠生產(chǎn)并銷售這種產(chǎn)品所得的年利潤為萬元.(年利潤=年銷售總收入一年總投資)

(1)(萬元)()的函數(shù)關系式;

(2)當該工廠的年產(chǎn)量為多少件時,所得年利潤最大?最大年利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)試判斷函數(shù)的單調(diào)性;

(2),求上的最大值;

(3)試證明:對任意的,不等式成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某貧困地區(qū)有1500戶居民,其中平原地區(qū)1050戶,山區(qū)450戶.為調(diào)查該地區(qū)2017年家庭收入情況,從而更好地實施“精準扶貧”,采用分層抽樣的方法,收集了150戶家庭2017年年收入的樣本數(shù)據(jù)(單位:萬元).

(Ⅰ)應收集多少戶山區(qū)家庭的樣本數(shù)據(jù)?

(Ⅱ)根據(jù)這150個樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為,,,,,,.如果將頻率視為概率,估計該地區(qū)2017年家庭收入超過1.5萬元的概率;

(Ⅲ)樣本數(shù)據(jù)中,由5戶山區(qū)家庭的年收入超過2萬元,請完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有的把握認為“該地區(qū)2017年家庭年收入與地區(qū)有關”?

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=cosx+是奇函數(shù);

存在實數(shù),使得sin+cos2;

是第一象限角且<,則tan<tan

x=是函數(shù)y=sin2x+的一條對稱軸方程;

函數(shù)y=tan2x+的圖象關于點,0成中心對稱圖形.

其中正確命題的序號為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列中,

(1)求證:數(shù)列是等比數(shù)列;

(2)求數(shù)列的通項公式

(3)設,若對任意,有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.

)求數(shù)列的通項公式;

)令.求數(shù)列的前n項和.

查看答案和解析>>

同步練習冊答案