【題目】設(shè)等差數(shù)列的前項和為,已知.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和為

(3)當(dāng)為何值時, 最大,并求的最大值.

【答案】(1);(2);(3)當(dāng)時, 最大,最大值為.

【解析】試題分析:()設(shè)出等差數(shù)列的首項和公差,由已知條件列方程組求出首項和公差,然后直接代入等差數(shù)列的通項公式求解;()把()中求出的首項和公差直接代入等差數(shù)列的前n項和公式求解;()利用二次函數(shù)的性質(zhì)求前n項和的最大值

試題解析:()設(shè)等差數(shù)列{an}的公差是d,

因為a3=24,a6=18,所以d==﹣2,

所以an=a3+n﹣3d=30﹣2n

)由()得,a1=28

所以

)因為,所以對稱軸是n=

n=1415時, 最大,

所以的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中, 成等差數(shù)列是的( )

A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年9月16日05時,第19號臺風(fēng)“杜蘇芮”的中心位于甲地,它以每小時30千米的速度向西偏北的方向移動,距臺風(fēng)中心千米以內(nèi)的地區(qū)都將受到影響,若16日08時到17日08時,距甲地正西方向900千米的乙地恰好受臺風(fēng)影響,則的值分別為(附: )( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,判斷的單調(diào)性;

(2)若上為單調(diào)增函數(shù),求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:實數(shù)x滿足x2-5ax+4a2<0,其中a>0,命題q:實數(shù)x滿足

(1)若a=1,且pq為真,求實數(shù)x的取值范圍;

(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知g(x)=﹣x2﹣3,f(x)是二次函數(shù),f(x)+g(x)是奇函數(shù),且當(dāng)x∈[﹣1,2]時,f(x)的最小值為1,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場調(diào)查,某城市的一種小商品在過去的近20天內(nèi)的銷售量(件)與價格(元)均為時間t(天)的函數(shù),且銷售量近似滿足g(t)=80﹣2t(件),價格近似滿足于 (元).
(1)試寫出該種商品的日銷售額y與時間t(0≤t≤20)的函數(shù)表達(dá)式;
(2)求該種商品的日銷售額y的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的離心率為,頂點為,且

(1)求橢圓的方程;

(2)是橢圓上除頂點外的任意點,直線軸于點,直線于點.設(shè)的斜率為 的斜率為,試問是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= +lg(3x+1)的定義域是

查看答案和解析>>

同步練習(xí)冊答案