【題目】函數(shù)f(x)= +lg(3x+1)的定義域是

【答案】(﹣ ,1)
【解析】解:由 ,解得:﹣
∴函數(shù)f(x)= +lg(3x+1)的定義域是(﹣ ,1).
所以答案是:(﹣ ,1).
【考點精析】認真審題,首先需要了解函數(shù)的定義域及其求法(求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零),還要掌握對數(shù)函數(shù)的定義域(對數(shù)函數(shù)的定義域范圍:(0,+∞))的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列的前項和為,已知.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和為;

(3)當為何值時, 最大,并求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓 的左右焦點分別為的、,離心率為;過拋物線焦點的直線交拋物線于兩點,當時, 點在軸上的射影為。連結并延長分別交、兩點,連接; 的面積分別記為, ,設.

)求橢圓和拋物線的方程;

)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱柱中,,,分別是,的中點.

求證:平面平面

求證:平面;

求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心在直線 上,與直線 相切,且截直線 所得弦長為6

(Ⅰ)求圓的方程

(Ⅱ)過點是否存在直線,使以被圓截得弦為直徑的圓經過原點?若存在,寫出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x2﹣2x﹣8≤0},B={x| <0},U=R.
(1)求A∪B;
(2)求(UA)∩B;
(3)如果C={x|x﹣a>0},且A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(I)求函數(shù)的對稱軸方程;

(II)將函數(shù)的圖象上各點的縱坐標保持不變,橫坐標伸長為原來的2倍,然后再向左平移個單位,得到函數(shù)的圖象.若分別是△ABC三個內角A,BC的對邊,a=2,c=4,且,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)的解析式滿足
(1)求函數(shù)f(x)的解析式;
(2)當a=1時,試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調性,并加以證明;
(3)當a=1時,記函數(shù) ,求函數(shù)g(x)在區(qū)間 上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓錐曲線 為參數(shù))和定點, , 是此圓錐曲線的左、右焦點.

(1)以原點為極點,以軸的正半軸為極軸建立極坐標系,求直線的極坐標方程;

(2)經過且與直線垂直的直線交此圓錐曲線 兩點,求的值.

查看答案和解析>>

同步練習冊答案