【題目】已知圓C1:x2+y2-2mx-4my+5m2-4=0(m∈R),圓C2:x2+y2=1.
(1)過定點(diǎn)M(1,-2)作圓C2的切線,求切線的方程;
(2)若圓C1與圓C2相交,求m的取值范圍;
(3)已知點(diǎn)P(2,0),圓C1上一點(diǎn)A,圓C2上一點(diǎn)B,求||的最小值的取值范圍.
【答案】(1)x=1或3x+4y+5=0;(2)<m<;(3)[,+∞)
【解析】
(1)當(dāng)切線斜率不存在時(shí),切線方程為x=1;當(dāng)切線斜率存在時(shí),設(shè)切線方程為y+2=k(x﹣1),由圓心到直線的距離等于半徑求得k,則切線方程可求;
(2)由圓C1求得C1(m,2m),r1=2,再求得C2(0,0),r2=1,由圓C1與圓C2相交,得r1﹣r2<|C1C2|<r1+r2,由此可得實(shí)數(shù)m的范圍;
(3)由題意(﹣2,0)+(m﹣2,2m),求得與共線時(shí)的范圍為[1,3],而,其最小值為,由此可得當(dāng)向量與共線同向且與反向時(shí),||的最小值最小,答案可求.
(1)當(dāng)切線斜率不存在時(shí),切線方程為x=1;
當(dāng)切線斜率存在時(shí),設(shè)切線方程為y+2=k(x-1),即kx-y-k-2=0.
由,解得k=-,此時(shí)切線方程為3x+4y+5=0.
∴切線方程為x=1或3x+4y+5=0;
(2)由圓C1:x2+y2-2mx-4my+5m2-4=0,得(x-m)2+(y-2m)2=4,
則C1(m,2m),r1=2,C2(0,0),r2=1.
由圓C1與圓C2相交,得r1-r2<|C1C2|<r1+r2,
∴1,即<m<;
(3)如圖,O(0,0),C1(m,2m),P(2,0),
則==(-2,0)+(m-2,2m)+
=(m-4,2m)+,
∵與共線,∴的范圍為[1,3],
而=,
其最小值為,
∴當(dāng)向量與共線同向且與反向時(shí),||的最小值最小,為,
∴||的最小值的取值范圍是[,+∞).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)P是函數(shù)圖象上任意一點(diǎn),點(diǎn)Q坐標(biāo)為,當(dāng)取得最小值時(shí)圓與圓相外切,則的最大值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中,平面平面,四邊形為菱形,且, , , 為中點(diǎn).
(1)求證: 平面;
(2)求二面角的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,離心率.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)已知直線交橢圓C于A,B兩點(diǎn).
①若直線經(jīng)過橢圓C的左焦點(diǎn)F,交y軸于點(diǎn)P,且滿足.求證:為定值;
②若,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為正的常數(shù),函數(shù).
(1)若,求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè),求在區(qū)間上的最小值.(為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓與軸的左右交點(diǎn)分別為,與軸正半軸的交點(diǎn)為.
(1)若直線過點(diǎn)并且與圓相切,求直線的方程;
(2)若點(diǎn)是圓上第一象限內(nèi)的點(diǎn),直線分別與軸交于點(diǎn),點(diǎn)是線段的中點(diǎn),直線,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的離心率為,短軸端點(diǎn)到焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè),為橢圓上任意兩點(diǎn),為坐標(biāo)原點(diǎn),且.求證:原點(diǎn)到直線的距離為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行運(yùn)動會,其中三級跳遠(yuǎn)的成績在8.0米(四舍五入,精確到0.1米)以上的進(jìn)入決賽,把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個(gè)小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.
(1)求進(jìn)入決賽的人數(shù);
(2)經(jīng)過多次測試后發(fā)現(xiàn),甲成績均勻分布在8~10米之間,乙成績均勻分布在8.5~10.5米之間,現(xiàn)甲,乙各跳一次,求甲比乙遠(yuǎn)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com