【題目】已知,,…,是由()個(gè)整數(shù),,…,按任意次序排列而成的數(shù)列,數(shù)列滿足(),,,…,是,,…,按從大到小的順序排列而成的數(shù)列,記.
(1)證明:當(dāng)為正偶數(shù)時(shí),不存在滿足()的數(shù)列.
(2)寫出(),并用含的式子表示.
(3)利用,證明:及.(參考:.)
【答案】(1)證明見解析;(2);(3)證明見解析.
【解析】
(1)可用反證法證明,假設(shè)存在滿足的數(shù)列,由條件結(jié)合奇數(shù)、偶數(shù)的概念即可得證;(2)由題意可得,,再由累加法即可得到;
(3)由展開即可證得:
,再由排序定理:亂序之和不小于倒序之和.
(1)若(),
則有,于是.
當(dāng)為正偶數(shù)時(shí),為大于1的正奇數(shù),故不為正整數(shù),
因?yàn)?/span>,,…,均為正整數(shù),
所以不存在滿足()的數(shù)列,
(2)().
因?yàn)?/span>,
于是
.
(3)先證.
①,
這里,(),
因?yàn)?/span>,,…,為從到按任意次序排列而成,
所以,,…,為從到個(gè)整數(shù)的集合,
從而,
于是由①,得,
因此,,
即.
再證.
由,
得
因?yàn)?/span>,
即,
所以,
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,、分別是棱、的中點(diǎn),、分別是線段與上的點(diǎn),則與平面平行的直線有( )
A.0條B.1條C.2條D.無數(shù)條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù),且),且數(shù)列是首項(xiàng)為,公差為的等差數(shù)列.
(1)求證:數(shù)列是等比數(shù)列;
(2)若,當(dāng)時(shí),求數(shù)列的前項(xiàng)和的最小值;
(3)若,問是否存在實(shí)數(shù),使得是遞增數(shù)列?若存在,求出的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長軸長為的橢圓的中心在原點(diǎn),其焦點(diǎn),在軸上,拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為軸,兩曲線在第一象限內(nèi)相交于點(diǎn), 且,的面積為3.
(1)求橢圓和拋物線的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作直線分別與拋物線和橢圓交于,,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示:湖面上甲、乙、丙三艘船沿著同一條直線航行,某一時(shí)刻,甲船在最前面的點(diǎn)處,乙船在中間點(diǎn)處,丙船在最后面的點(diǎn)處,且.一架無人機(jī)在空中的點(diǎn)處對(duì)它們進(jìn)行數(shù)據(jù)測(cè)量,在同一時(shí)刻測(cè)得, .(船只與無人機(jī)的大小及其它因素忽略不計(jì))
(1)求此時(shí)無人機(jī)到甲、丙兩船的距離之比;
(2)若此時(shí)甲、乙兩船相距100米,求無人機(jī)到丙船的距離.(精確到1米)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記點(diǎn)到圖形上每一個(gè)點(diǎn)的距離的最小值稱為點(diǎn)到圖形的距離,那么平面內(nèi)到定圓的距離與到定點(diǎn)的距離相等的點(diǎn)的軌跡不可能是 ( )
A.圓B.橢圓C.雙曲線的一支D.直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有六名百米運(yùn)動(dòng)員參加比賽,甲、乙、丙、丁四名同學(xué)猜測(cè)誰跑了第一名.甲猜不是就是;乙猜不是;丙猜不是中任一個(gè);丁猜是中之一,若四名同學(xué)中只有一名同學(xué)猜對(duì),則猜對(duì)的是( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為函數(shù)(,為定義域)圖像上的一個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),為點(diǎn)與點(diǎn)兩點(diǎn)間的距離.
(1)若,求的最大值與最小值;
(2)若,是否存在實(shí)數(shù),使得的最小值不小于2?若存在,請(qǐng)求出的取值范圍;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列滿足則稱為數(shù)列.記
(1)若為數(shù)列,且試寫出的所有可能值;
(2)若為數(shù)列,且求的最大值;
(3)對(duì)任意給定的正整數(shù)是否存在數(shù)列使得?若存在,寫出滿足條件的一個(gè)數(shù)列;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com