1.已知某一隨機變量ξ的概率分布如下,且E(ξ)=6.3,則a的值為7.
ξ4a9
P0.50.1b

分析 利用離散型隨機變量的分布列的概率和直接求解即可.

解答 解:E(ξ)=4×0.5+a×0.1+b×9=6.3,0.5+0.1+b=1⇒a=7,b=0.4

點評 本題考查概率的求法,考查離散型概率分布列的性質(zhì)的應用,解題時要認真審題,是基礎題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.在△ABC中,已知AB=AC=5,BC=6,則$\overrightarrow{AB}•\overrightarrow{AC}$=( 。
A.18B.12C.7D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知cos(α+β)=$\frac{4}{5}$,cos(α-β)=-$\frac{4}{5}$,α+β∈($\frac{7π}{4}$,2π),α-β∈($\frac{3π}{4}$,π),求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知隨機變量X的分布列為P(X=i)=$\frac{i}{2a}$(i=1,2,3),則a=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此做了四次試驗,得到的數(shù)據(jù)如下:
零件的個數(shù)x(個)2345
加工的時間y(小時)2.5344.5
已知y關于x的回歸方程y=bx+1.05,則b=0.7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.隨機變量ξ的概率分布列為P(ξ=n)=a($\frac{4}{5}$)n(n=0.1.2),其中a為常數(shù),則P(0.1<ξ<2.9)的值為(  )
A.$\frac{16}{25}$.B.$\frac{9}{16}$C.$\frac{36}{61}$D.$\frac{20}{61}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,點E,F(xiàn)分別是PB,DC的中點.
(1)求證:EF∥平面PAD;
(2)求EF與平面PDB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在區(qū)間(0,1)隨機地取出一個數(shù),則這個數(shù)小于$\frac{1}{3}$的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知集合C={(x,y)|xy-3x+y+1=0},數(shù)列{an}的首項a1=3,且當n≥2時,點(an-1,an)∈C,數(shù)列{bn}滿足bn=$\frac{1}{{1-{a_n}}}$.
(1)試判斷數(shù)列{bn}是否是等差數(shù)列,并說明理由;
(2)若$\lim_{n→∞}(\frac{s}{a_n}+\frac{t}{b_n})=1$(s,t∈R),求st的值.

查看答案和解析>>

同步練習冊答案