7.由經(jīng)驗得知,在學(xué)校食堂某窗口處排隊等候打飯的人數(shù)及其概率如下:
排隊人數(shù)012345人以上
概率0.10.160.30.30.10.04
則至多2個人排隊的概率為( 。
A.0.56B.0.44C.0.26D.0.14

分析 至多2個人排隊的概率為p=p(X=0)+P(X=1)+P(X=2),由此能求出結(jié)果.

解答 解:由在學(xué)校食堂某窗口處排隊等候打飯的人數(shù)及其概率表知:
至多2個人排隊的概率為:
p=p(X=0)+P(X=1)+P(X=2)
=0.1+0.16+0.3=0.56.
故選:A.

點評 本題考查概率的求法,是基本題,解題時要認(rèn)真審題,注意互斥事件概率加法公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,△ABC內(nèi)接于圓,AD切圓于A,E是BA延長線上一點,連接CE交AD于D點.若D是CE的中點.求證:AC2=AB•AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知拋物線C:y2=2px(p>0)的焦點為F,直線y=2與y軸的交點為P,與C的交點為Q,且|QF|=2|PQ|
(Ⅰ)求C的方程
(Ⅱ)判斷C上是否存在兩點M,N,使得M,N關(guān)于直線l:x+y-4=0對稱,若存在,求出|MN|,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知拋物線C:y2=-2x的焦點為F,點A(x0,y0)是C上一點,若|AF|=$\frac{3}{2}$,則x0=( 。
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知兩點A(-1,5),B(3,7),圓C以線段AB為直徑.
(Ⅰ)求圓C的方程;
(Ⅱ)若直線l:x+y-4=0與圓C相交于M,N兩點,求弦MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在直三棱柱ABC-A1B1C1中,平面A1BC⊥側(cè)面A1B1BA,且AA1=AB=BC=2,則AC與平面A1BC所成角為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}滿足a1=2,an+1=$\frac{n{a}_{n}-1}{n+1}$(n∈N+).
(1)計算a2,a3,a4,并猜測出{an}的通項公式;
(2)用數(shù)學(xué)歸納法證明(1)中你的猜測.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={x|f(x)=lg(x-1)+$\sqrt{2-x}$},集合B={y|y=2x+a,x≤0}.
(1)若a=$\frac{3}{2}$,求A∪B;
(2)若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在(x-3)7的展開式中,x5的系數(shù)是189(結(jié)果用數(shù)值表示).

查看答案和解析>>

同步練習(xí)冊答案