11.若等比數(shù)列{an}的通項公式為an=3×2n-1,則其公比q=(  )
A.-2B.2C.3D.6

分析 根據(jù)通項公式結(jié)合等比數(shù)列的定義進行判斷即可.

解答 解:當n≥2時,$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{3×{2}^{n-1}}{3×{2}^{n-2}}$=2為常數(shù),
則數(shù)列{an}是公比為2的等比數(shù)列,
故選:B.

點評 本題主要考查等比數(shù)列的判斷,根據(jù)等比數(shù)列的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,y的最小值為4的是( 。
A.$y=x+\frac{4}{x}$B.$y=sinx+\frac{4}{sinx}(0<x<π)$
C.$y={log_2}x+\frac{4}{{{{log}_2}x}}$D.$y={e^x}+\frac{4}{e^x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若θ∈[${\frac{π}{4}$,$\frac{π}{2}}$],sin2θ=$\frac{{3\sqrt{7}}}{8}$,則sinθ=( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{\sqrt{7}}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知棱長為1,各面均為等邊三角形的四面體S-ABC,則它的表面積S=$\sqrt{3}$,體積V=$\frac{\sqrt{2}}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若n是7777-10除以19的余數(shù),則${({\frac{5}{2x}-\frac{2}{5}\root{3}{x^2}})^n}$的展開式中的常數(shù)項為$\frac{168}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知銳角三角形三邊長分別為1,3,a,則a的取值范圍是(  )
A.8<a<10B.2$\sqrt{2}<a<\sqrt{10}$C.$2\sqrt{2}<a<10$D.$\sqrt{10}<a<8$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=\frac{a+blnx}{x+1}$在點(1,f(1))處的切線方程為x+y=2.
(Ⅰ)求a,b的值;
(Ⅱ)若對函數(shù)f(x)定義域內(nèi)的任一個實數(shù)x,都有xf(x)<m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知cos(π-α)=-$\frac{5}{13}$且α是第一象限角,則sinα=(  )
A.$-\frac{5}{13}$B.$\frac{12}{13}$C.$-\frac{12}{13}$D.$\frac{5}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為10,一條漸近線為y=$\frac{1}{2}$x,則該雙曲線的方程為( 。
A.$\frac{{x}^{2}}{20}-\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}$=1C.$\frac{{x}^{2}}{80}-\frac{{y}^{2}}{20}$=1D.$\frac{{x}^{2}}{20}-\frac{{y}^{2}}{80}$=1

查看答案和解析>>

同步練習(xí)冊答案