8.已知拋物線y2=2px(p>0)上一點M(1,b)到焦點F的距離為2,則b=±2.

分析 根據(jù)拋物線的定義可知該點到準(zhǔn)線的距離為2,進(jìn)而利用拋物線方程求得其準(zhǔn)線方程,利用點到直線的距離求得p,即可得出結(jié)論.

解答 解:∵拋物線y2=2px(p>0)上一點M(1,b)到焦點F的距離為2,
∴該點到準(zhǔn)線的距離為2,
拋物線的準(zhǔn)線方程為x=-$\frac{p}{2}$,
∴1+$\frac{p}{2}$=2,求得p=2,
∴y2=4x,代入點M(1,b),可得b=±2
故答案為:±2.

點評 本題主要考查了拋物線的定義和性質(zhì).考查了考生對拋物線定義的掌握和靈活應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合 A={-2,-1,0,2,3},B={y|y=|x|,x∈A},則A∩B=( 。
A.{0,1,2,3}B.{2,3}C.{0,1,2}D.{0,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線l1:(m-2)x-y+5=0與l2:(m-2)x+(3-m)y+2=0平行,則實數(shù)m的值為( 。
A.2或4B.1或4C.1或2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=axlnx,x∈(0,+∞),其中a為實數(shù),f′(x)為f(x)的導(dǎo)函數(shù),若f′(1)=2,則a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若二次函數(shù)f(x)=cx2+4x+a(x∈R)的值域為[0,+∞),則$\frac{1}{a}$+$\frac{9}{c}$的最小值為(  )
A.3B.$\frac{9}{2}$C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等差數(shù)列{an}的前n項和為Sn,公差d≠0,且S1+S3=18,a1,a4,a13成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè){$\frac{{a}_{n}}{_{n}}$}是首項為1,公比為$\frac{1}{3}$的等比數(shù)列,求數(shù)列{bn}前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.甲乙兩個競賽隊都參加了6場比賽,比賽得分情況的經(jīng)營如圖如圖(單位:分)),其中乙隊的一個得分?jǐn)?shù)字被污損,那么估計乙隊的平均得分大于甲隊的平均得分的概率為( 。
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若點A(1,1),B(2,m)都是方程ax2+xy-2=0的曲線上,則m=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知等差數(shù)列{an}前n項和為Sn,若S15=75,a3+a4+a5=12,則S11=(  )
A.109B.99C.$\frac{99}{2}$D.$\frac{109}{2}$

查看答案和解析>>

同步練習(xí)冊答案