【題目】在某測試中,卷面滿分為100分,60分為及格,為了調(diào)查午休對本次測試前兩個月復(fù)習(xí)效果的影響,特對復(fù)習(xí)中進(jìn)行午休和不進(jìn)行午休的考生進(jìn)行了測試成績的統(tǒng)計,數(shù)據(jù)如下表所示:
分?jǐn)?shù)段 | 29~ 40 | 41~ 50 | 51~ 60 | 61~ 70 | 71~ 80 | 81~ 90 | 91~ 100 |
午休考 生人數(shù) | 23 | 47 | 30 | 21 | 14 | 31 | 14 |
不午休 考生人數(shù) | 17 | 51 | 67 | 15 | 30 | 17 | 3 |
(1)根據(jù)上述表格完成列聯(lián)表:
及格人數(shù) | 不及格人數(shù) | 總計 | |
午休 | |||
不午休 | |||
總計 |
(2)根據(jù)列聯(lián)表可以得出什么樣的結(jié)論?對今后的復(fù)習(xí)有什么指導(dǎo)意義?
【答案】(1)見解析;(2)見解析
【解析】
(1)仔細(xì)研讀題干條件,可得到表中數(shù)據(jù);(2)分別求出午睡和不午睡的學(xué)生的成績的及格率,進(jìn)而得到結(jié)論.
(1)根據(jù)題表中數(shù)據(jù)可以得到列聯(lián)表如下:
及格人數(shù) | 不及格人數(shù) | 總計 | |
午休 | 80 | 100 | 180 |
不午休 | 65 | 135 | 200 |
總計 | 145 | 235 | 380 |
(2)計算可知,午休的考生及格率為P1=,不午休的考生的及格率為P2=,則P1>P2,因此,可以粗略判斷午休與考生考試及格有關(guān)系,并且午休的及格率高,所以在以后的復(fù)習(xí)中考生應(yīng)盡量適當(dāng)午休,以保持最佳的學(xué)習(xí)狀態(tài).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的命題是( )
A.若存在,當(dāng)時,有,則說函數(shù)在區(qū)間上是增函數(shù):
B.若存在(,,、),當(dāng)時,有,則說函數(shù)在區(qū)間上是增函數(shù);
C.函數(shù)的定義域為,若對任意的,都有,則函數(shù)在上一定是減函數(shù):
D.若對任意,當(dāng)時,有,則說函數(shù)在區(qū)間上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a(x﹣1)2+lnx+1,g(x)=f(x)﹣x,其中a∈R.
(Ⅰ)當(dāng)a=﹣ 時,求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>0時,求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈[1,+∞)時,若y=f(x)圖象上的點都在 所表示的平面區(qū)域內(nèi),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=9x﹣2a3x+3:
(1)若a=1,x∈[0,1]時,求f(x)的值域;
(2)當(dāng)x∈[﹣1,1]時,求f(x)的最小值h(a);
(3)是否存在實數(shù)m、n,同時滿足下列條件:①n>m>3;②當(dāng)h(a)的定義域為[m,n]時,其值域為[m2,n2],若存在,求出m、n的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=k3n﹣m,且a1=3,a3=27.
(I)求證:數(shù)列{an}是等比數(shù)列;
(II)若anbn=log3an+1 , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在斜三棱柱ABC﹣A1B1C1中,底面ABC是正三角形,E是AB中點,A1E⊥平面ABC.
(I)證明:BC1∥平面 A1EC;
(II)若A1A⊥A1B,且AB=2.
①求點B到平面ACC1A1的距離;
②求直線CB1與平面ACC1A1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex , g(x)=kx+1.
(I)求函數(shù)y=f(x)﹣(x+1)的最小值;
(II)證明:當(dāng)k>1時,存在x0>0,使對于任意x∈(0,x0)都有f(x)<g(x);
(III)若存在實數(shù)m使對任意x∈(0,m)都有|f(x)﹣g(x)|>x成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,函數(shù)f(x)= +|lnx﹣a|,x∈[1,e2].
(1)當(dāng)a=3時,求曲線y=f(x)在點(3,f(3))處的切線方程;
(2)若f(x)≤ 恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com