【題目】函數(shù)在它的某一個(gè)周期內(nèi)的單調(diào)減區(qū)間是.
(1)求的解析式;
(2)將的圖象先向右平移個(gè)單位,再將圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變),所得到的圖象對(duì)應(yīng)的函數(shù)記為,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
試題分析:(1)求三角函數(shù)的解析式,可根據(jù)的性質(zhì)求解,條件“一個(gè)周期內(nèi)的單調(diào)減區(qū)間是”,可得周期,最大值和最小值,由此可求得;(2)由三角函數(shù)圖象變換可得的解析式,從而能求得在上的最大值和最小值,,等價(jià)于,即,因此只要有,由此可得的范圍.
試題解析:(1)由條件,,∴,∴,又,
∴,∴的解析式為.
(2)將的圖象先向右平移個(gè)單位,得,∴,
而,∴,∴函數(shù)在上的最大值為1,此時(shí),∴;最小值為,此時(shí),∴.
時(shí),不等式恒成立,即恒成立,
即,∴,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校為測(cè)評(píng)班級(jí)學(xué)生對(duì)任課教師的滿(mǎn)意度,采用“100分制”打分的方式來(lái)計(jì)分,規(guī)定滿(mǎn)意度不低于98分,則評(píng)價(jià)該教師為“優(yōu)秀”,現(xiàn)從某班學(xué)生中隨機(jī)抽取10名,以下莖葉圖記錄了他們對(duì)某教師的滿(mǎn)意度分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉);
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)求從這10人中隨機(jī)選取3人,至多有1人評(píng)價(jià)該教師是“優(yōu)秀”的概率;
(3)以這10人的樣本數(shù)據(jù)來(lái)估計(jì)整個(gè)班級(jí)的總體數(shù)據(jù),若從該班任選3人,記表示抽到評(píng)價(jià)該教師為“優(yōu)秀”的人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】統(tǒng)計(jì)表明,某種型號(hào)的汽車(chē)在勻速行駛中每小時(shí)的耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為:.已知甲、乙兩地相距100千米.
(Ⅰ)當(dāng)汽車(chē)以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(II)當(dāng)汽車(chē)以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,平面與平面垂直,是正方形,在直角梯形中,,,且,為線段的中點(diǎn).
(1)求證:平面;
(2)求證:平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若存在兩個(gè)極值點(diǎn),求證:無(wú)論實(shí)數(shù)取什么值都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】光線通過(guò)一塊玻璃,其強(qiáng)度要損失10%,把幾塊這樣的玻璃重疊起來(lái),設(shè)光線原來(lái)的強(qiáng)度為,通過(guò)塊玻璃以后強(qiáng)度為.
(Ⅰ)寫(xiě)出關(guān)于的函數(shù)關(guān)系式;
(Ⅱ)通過(guò)多少塊玻璃以后,光線強(qiáng)度減弱到原來(lái)的以下.(lg3≈0.4771).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于25”的概率;
(2)請(qǐng)根據(jù)3月2日至3月4日的數(shù)據(jù),求出關(guān)于的線性回歸方程.
(參考公式:回歸直線方程為,其中, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于某設(shè)備的使用年限與所支出的維修費(fèi)用(萬(wàn)元),有如下統(tǒng)計(jì)資料:
設(shè)對(duì)呈線性相關(guān)關(guān)系,試求:
(1)線性回歸方程的回歸系數(shù);
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:存在實(shí)數(shù)m,使方程x2+mx+1=0有兩個(gè)不等的負(fù)根;命題q:存在實(shí)數(shù)m,使方程4x2+4(m-2)x+1=0無(wú)實(shí)根.若“p或q”為真,“p且q”為假,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com