Processing math: 54%
14.若A={x|-3≤x≤4},B={x|2m-1≤m+1},B⊆A,求實數(shù)m的取值范圍.

分析 本題的關(guān)鍵是根據(jù)集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且B⊆A,理清集合A、B的關(guān)系,求實數(shù)m的取值范圍

解答 解:集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且B⊆A
①B=∅時,2m-1≥m+1,故m≥2
②B≠∅時,m<2,且{2m13m+14
故-1≤m<2.
綜上,實數(shù)m的取值范圍:m≥-1.

點評 本題主要考查集合的相等等基本運算,屬于基礎(chǔ)題.要正確判斷兩個集合間相等的關(guān)系,必須對集合的相關(guān)概念有深刻的理解,善于抓住代表元素,認(rèn)清集合的特征.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓x2a2+y2b2=1ab0的離心率為12,長軸A1A2,短軸B1B2,四邊形A1B1A2B2的面積為43
(I)求橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)過橢圓的右焦點F的直線l交橢圓于P、Q,直線A1P與A2Q交于M,A1Q與A2P交于N.
(i)證明:MN⊥x軸,并求直線MN的方程.
(ii)證明:以MN為直徑的圓過右焦點F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=\left\{{\begin{array}{l}{a{x^2}+2,x≥0}\\{(a-2)•{2^x},x<0}\end{array}}是R上的單調(diào)函數(shù),則實數(shù)a的取值范圍是( �。�
A.(2,+∞)B.(2,4]C.(-∞,4]D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=ln(ax-1)的導(dǎo)函數(shù)是f'(x),且f'(2)=2,則實數(shù)a的值為( �。�
A.12B.23C.34D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列四組函數(shù)中,相等的兩個函數(shù)是(  )
A.f(x)=x,gx=x2xB.fx=x2,gx={xx0xx0
C.fx=x2,g(x)=xD.fx=x2,g(x)=\root{3}{x^3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖所示,正方體的棱長為1,B'C∩BC'=O,則AO與A'C'所成角的度數(shù)為( �。�
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,角A,B,C的對邊分別為a,b,c,sinA,sinB,sinC依次成等比數(shù)列,c=2a且BABC=24,則△ABC的面積是47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知銳角θ滿足sin(\frac{θ}{2}+\frac{π}{6})=\frac{2}{3},則cos(θ+\frac{5π}{6})的值為( �。�
A.-\frac{1}{9}B.\frac{4\sqrt{5}}{9}C.-\frac{4\sqrt{5}}{9}D.\frac{1}{9}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量\overrightarrow{BA}=(\frac{1}{2},\frac{\sqrt{3}}{2}),\overrightarrow{BC}=(\frac{\sqrt{3}}{2},\frac{1}{2}),則∠ABC=(  )
A.1200B.600C.450D.300

查看答案和解析>>

同步練習(xí)冊答案