角α(0<α<2π)的正、余弦線的長(zhǎng)度相等,且正、余弦符號(hào)相異.那么α的值為( 。
A、
π
4
B、
4
C、
4
D、
4
4
考點(diǎn):三角函數(shù)值的符號(hào)
專題:三角函數(shù)的求值
分析:利用三角函數(shù)線的概念及三角函數(shù)值的象限符號(hào)得答案.
解答: 解:∵角α(0<α<2π)的正、余弦線的長(zhǎng)度相等,
∴α的終邊在一三或二四象限的角平分線上,
又正、余弦符號(hào)相異,
∴α=
4
4

故選:D.
點(diǎn)評(píng):本題考查了三角函數(shù)線的概念,考查了三角函數(shù)值的符號(hào),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的圖象如圖所示,f′(x)是f(x)的導(dǎo)函數(shù),則下列數(shù)值排序正確的是(  )
A、0<f′(2)<f′(3)<f(3)-f(2)
B、0<f′(3)<f(3)-f(2)<f′(3)
C、0<f′(3)<f′(2)<f(3)-f(2)
D、0<f(3)-<f(2)<f′(2)<f′(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是( 。
A、函數(shù)y=x+
4
x
的最小值為4
B、函數(shù)y=sinx+
4
sinx
(0<x<с 的最小值為4
C、函數(shù)y=|x|+
4
|x|
的最小值為4
D、函數(shù)y=lgx+
4
lgx
的最小值為4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知θ是第三象限角,且sin4θ+cos4θ=
5
9
,則sinθcosθ=( 。
A、-
2
3
B、
2
3
C、
1
3
D、-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在高三某個(gè)班中,有
1
4
的學(xué)生數(shù)學(xué)成績(jī)優(yōu)秀,若從班中隨機(jī)找出5名學(xué)生,那么,其中數(shù)學(xué)成績(jī)優(yōu)秀的學(xué)生數(shù)X~B(5,
1
4
),則P(X=k)=
C
k
5
1
4
k•(
3
4
5-k取最大值時(shí)k的值為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)A、B分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)長(zhǎng)軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P(
3
2
5
2
3
)在橢圓上,又橢圓離心率e=
2
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M是橢圓長(zhǎng)軸AB上的一點(diǎn),M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2+mx-4y+1=0,過定點(diǎn)P(0,1)作斜率為1的直線交圓C于A、B兩點(diǎn),P為線段AB的中點(diǎn).
(1)求m的值;
(2)設(shè)E為圓C上不同于A、B的任意一點(diǎn),求△ABE面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某班有54位同學(xué),正、副班長(zhǎng)各一名,現(xiàn)選派6名同學(xué)參加某課外小組,在下列各種情況中,各有多少種不同的選法?
(1)正副班長(zhǎng)必須入選;          
(2)正副班長(zhǎng)至少有一人入選;
(3)班長(zhǎng)有一人入選,班長(zhǎng)以外的某二人不入選.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某運(yùn)輸公司今年年初用128萬(wàn)元購(gòu)進(jìn)一批出租車,并立即投入營(yíng)運(yùn),計(jì)劃第一年維修、保險(xiǎn)及保養(yǎng)費(fèi)用4萬(wàn)元,從第二年開始,每年所需維修、保險(xiǎn)及保養(yǎng)費(fèi)用比上一年增加4萬(wàn)元,該批出租車使用后,每年的總收入為120萬(wàn)元,設(shè)使用x年后該批出租車的盈利額為y萬(wàn)元.
(Ⅰ)寫出y與x之間的函數(shù)關(guān)系式;
(Ⅱ)試確定x,使該批出租車年平均盈利額達(dá)到最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案