【題目】已知a,b∈(0,+∞),且2a4b=2. (Ⅰ)求 的最小值;
(Ⅱ)若存在a,b∈(0,+∞),使得不等式 成立,求實數(shù)x的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),若對任意實數(shù)x,有f(x)>f'(x),且f(x)+2017為奇函數(shù),則不等式f(x)+2017ex<0的解集是( )
A.(﹣∞,0)
B.(0,+∞)
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的長軸長為 ,左焦點的坐標(biāo)為(﹣2,0);
(1)求C的標(biāo)準(zhǔn)方程;
(2)設(shè)與x軸不垂直的直線l過C的右焦點,并與C交于A、B兩點,且 ,試求直線l的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的各面中,面積最大的是( )
A.8
B.
C.12
D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的 中點.
(Ⅰ)若PA=PD,求證:平面PQB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,點M在線段PC上,試
確定點M的位置,使二面角M﹣BQ﹣C大小為60°,并求出 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且bsin2C=csinB.
(1)求角C;
(2)若 ,求sinA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C的坐標(biāo)分別為(﹣ ,0),( ,0),(m,n),G,O′,H分別為△ABC的重心,外心,垂心.
(1)寫出重心G的坐標(biāo);
(2)求外心O′,垂心H的坐標(biāo);
(3)求證:G,H,O′三點共線,且滿足|GH|=2|OG′|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)如果f(x)在x=0處取得極值,求k的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當(dāng)k=0時,過點A(0,t)存在函數(shù)曲線f(x)的切線,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)求出圓C的直角坐標(biāo)方程;
(2)已知圓C與x軸相交于A,B兩點,直線l:y=2x關(guān)于點M(0,m)(m≠0)對稱的直線為l'.若直線l'上存在點P使得∠APB=90°,求實數(shù)m的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com