【題目】如圖,在中,,,.過(guò)的中點(diǎn)的動(dòng)直線與線段交于點(diǎn).沿直線向上翻折至,使得點(diǎn)在平面內(nèi)的投影落在線段.則點(diǎn)的軌跡長(zhǎng)度為________.

【答案】

【解析】

建立空間坐標(biāo)系,求出的軌跡,根據(jù)折疊過(guò)程中量之間的關(guān)系的,可得的取值范圍,進(jìn)而得到圓心角,從而弧長(zhǎng)即點(diǎn)的軌跡長(zhǎng)度.

因?yàn)榉矍昂?/span>長(zhǎng)度不變,所以點(diǎn)可以在空間中看做以為球心,AC為直徑的球面上,又因?yàn)?/span>的投影始終在上,所以點(diǎn)所在的面垂直于底面

故點(diǎn)軌跡為垂直于底面ABC的豎直面去截球所得圓面的圓弧,這個(gè)圓弧的直徑為時(shí),的長(zhǎng)度(由余弦定理可得,所以此時(shí)),

如圖,以底面點(diǎn)B為空間原點(diǎn)建系,根據(jù)底面幾何關(guān)系,

得點(diǎn),點(diǎn),

設(shè)點(diǎn),翻折后點(diǎn)的投影軸上,

所以點(diǎn)縱坐標(biāo)為0,即,

根據(jù)空間兩點(diǎn)之間距離公式可得軌跡:,

又因?yàn)閯?dòng)點(diǎn)要符合空間面翻折結(jié)論:

,其中

又動(dòng)點(diǎn)N在線段AB上動(dòng),設(shè)

,

,由,可計(jì)算得橫坐標(biāo)范圍為,

且點(diǎn)在上方,由計(jì)算可得圓弧所在扇形圓心角為,

所以弧長(zhǎng)為.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】惠州市某商店銷售某海鮮,經(jīng)理統(tǒng)計(jì)了春節(jié)前后50天該海鮮的日需求量,單位:公斤),其頻率分布直方圖如下圖所示.該海鮮每天進(jìn)貨1次,每銷售1公斤可獲利40元;若供大于求,剩余的海鮮削價(jià)處理,削價(jià)處理的海鮮每公斤虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,調(diào)撥的海鮮銷售1公斤可獲利30.假設(shè)商店該海鮮每天的進(jìn)貨量為14公斤,商店銷售該海鮮的日利潤(rùn)為.

1)求商店日利潤(rùn)關(guān)于日需求量的函數(shù)表達(dá)式.

2)根據(jù)頻率分布直方圖,

①估計(jì)這50天此商店該海鮮日需求量的平均數(shù).

②假設(shè)用事件發(fā)生的頻率估計(jì)概率,請(qǐng)估計(jì)日利潤(rùn)不少于620元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有兩個(gè)極值點(diǎn)(為自然對(duì)數(shù)的底數(shù)).

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)求的普通方程和曲線C的直角坐標(biāo)方程;

2)求曲線C上的點(diǎn)到距離的最大值及該點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)

1)證明:當(dāng)時(shí),

2)當(dāng)時(shí),求整數(shù)的最大值.(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某精密儀器生產(chǎn)車間每天生產(chǎn)個(gè)零件,質(zhì)檢員小張每天都會(huì)隨機(jī)地從中抽取50個(gè)零件進(jìn)行檢查是否合格,若較多零件不合格,則需對(duì)其余所有零件進(jìn)行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗(yàn),這些零件的長(zhǎng)度服從正態(tài)分布(單位:微米),且相互獨(dú)立.若零件的長(zhǎng)度滿足,則認(rèn)為該零件是合格的,否則該零件不合格.

1)假設(shè)某一天小張抽查出不合格的零件數(shù)為,求的數(shù)學(xué)期望;

2)小張某天恰好從50個(gè)零件中檢查出2個(gè)不合格的零件,若以此頻率作為當(dāng)天生產(chǎn)零件的不合格率.已知檢查一個(gè)零件的成本為10元,而每個(gè)不合格零件流入市場(chǎng)帶來(lái)的損失為260元.假設(shè)充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說(shuō)明理由.

附:若隨機(jī)變量服從正態(tài)分布,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)若曲線在點(diǎn)處的切線方程為,求,;

2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足,,,記數(shù)列的前項(xiàng)和為,則對(duì)任意,則①數(shù)列單調(diào)遞增;②;③;④.上述四個(gè)結(jié)論中正確的是______.(填寫(xiě)相應(yīng)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的長(zhǎng)軸長(zhǎng)為,點(diǎn)、為橢圓上的三個(gè)點(diǎn),為橢圓的右端點(diǎn),過(guò)中心,且

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)是橢圓上位于直線同側(cè)的兩個(gè)動(dòng)點(diǎn)(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案