(2014·貴陽模擬)一個幾何體是由圓柱ADD1A1和三棱錐E-ABC組合而成,點A,B,C在圓O的圓周上,其正(主)視圖,側(cè)(左)視圖的面積分別為10和12,如圖所示,其中EA⊥平面ABC,AB⊥AC,AB=AC.AE=2.

(1)求證:AC⊥BD.
(2)求三棱錐E-BCD的體積.

(1)見解析     (2)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

四面體及其三視圖如圖所示,平行于棱的平面分別交四面體的棱于點.

(1)求四面體的體積;
(2)證明:四邊形是矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在斜三棱柱中,平面平面ABC,,,.
(1)求證:
(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,四棱錐中,底面是邊長為的正方形,側(cè)棱底面,且,的中點.
(1)證明:平面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD為正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=600,E為PA的中點,F為PC上不同于P、C的任意一點.
(1)求證:PC∥面EBD
(2)求異面直線AC與PB間的距離
(3)求三棱錐E-BDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱柱ABC—A1B1C1的側(cè)面AA1B1B為正方形,側(cè)面BB1C1C為菱形,∠CBB1=60°,AB⊥B1C.
(1)求證:平面AA1B1B⊥平面BB1C1C;
(2)若AB=2,求三棱柱ABC—A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,PA⊥平面ABCD,ABCD是矩形,AB=1,,點F是PB的中點,點E在邊BC上移動.

(1)若,求證:
(2)若二面角的大小為,則CE為何值時,三棱錐的體積為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,一簡單組合體的一個面ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,且DC平面ABC.

(1)證明:平面ACD平面;
(2)若,,試求該簡單組合體的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖一個幾何體的正視圖和俯視圖如圖所示,其中俯視圖為邊長為的正三角形,且圓與三角形內(nèi)切,則側(cè)視圖的面積為_____.

查看答案和解析>>

同步練習(xí)冊答案