17.定義在$[{\frac{1}{π},π}]$上的函數(shù)f(x),滿足$f(x)=f(\frac{1}{x})$,且當$x∈[{\frac{1}{π},1}]$時,f(x)=lnx,若函數(shù)g(x)=f(x)-ax在$[{\frac{1}{π},π}]$上有零點,則實數(shù)a的取值范圍是( 。
A.$[{-\frac{lnπ}{π},0}]$B.[-πl(wèi)nπ,0]C.$[{-\frac{1}{e},\frac{lnπ}{π}}]$D.$[{-\frac{e}{2},-\frac{1}{π}}]$

分析 由題意,找出x∈(1,π]的解析式,畫出f(x)定義在$[{\frac{1}{π},π}]$上的圖形,利用直線y=ax與f(x)的交點個數(shù)得到a的范圍.

解答 解:因為當$x∈[{\frac{1}{π},1}]$時,f(x)=lnx,
所以x∈(1,π]時,$\frac{1}{x}∈[\frac{1}{π},1]$,所以f($\frac{1}{x}$)=-lnx,此時$f(x)=f(\frac{1}{x})$,故f(x)=-lnx,x∈(1,π].
所以f(x)在$[{\frac{1}{π},π}]$上的圖象如圖,要使函數(shù)g(x)=f(x)-ax在$[{\frac{1}{π},π}]$上有零點,只要直線y=ax與f(x)的圖象有交點,
由圖象可得,kOA≤a≤0,其中${k}_{OA}=\frac{ln\frac{1}{π}}{\frac{1}{π}}=-πl(wèi)nπ$,
所以使函數(shù)g(x)=f(x)-ax在$[{\frac{1}{π},π}]$上有零點,則實數(shù)a的取值范圍是[-πl(wèi)nπ,0].
故選:B.

點評 本題考查通過將定義域轉(zhuǎn)變到已知函數(shù)的定義域上求函數(shù)解析式的方法,數(shù)形結(jié)合解題的方法,關(guān)鍵是將零點個數(shù)轉(zhuǎn)化為函數(shù)圖象的交點個數(shù)解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖甲,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AD=2,AB=BC=1,E是AD的中點,O是AC與BE的交點,將△ABE沿BE折起到△A1BE的位置,如圖乙
(1)證明:CD⊥平面A1OC
(2)若平面A1BE⊥平面BCDE,求點B與平面A1CD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在菱形ABCD中,AB=2,∠ABC=60°,BD∩AC=O,現(xiàn)將其沿菱形對角線BD折起得空間四邊形EBCD,使EC=$\sqrt{2}$.
(Ⅰ)求證:EO⊥CD.
(Ⅱ)求點O到平面EDC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知直線2x+y-2=0與直線4x+my+6=0平行,則它們之間的距離為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)數(shù)$z=\frac{i+1}{{-{i^2}-3i}}$在復(fù)平面內(nèi)對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=ln(1-5x)的定義域是( 。
A.(-∞,0)B.(0,1)C.(-∞,1)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.計算:
(1)已知$a{\;}^{\frac{1}{2}}+a{\;}^{-\frac{1}{2}}=3$,求a+a-1;
(2)$2{(lg\sqrt{2})^2}+lg\sqrt{2}•lg5+\sqrt{{{(lg\sqrt{2})}^2}-2lg\sqrt{2}+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知偶函數(shù)f(x)在(0,+∞)上遞減,已知a=0.2${\;}^{\sqrt{2}}$,b=log${\;}_{\sqrt{2}}$0.2,c=$\sqrt{2}$0.2,則f(a),f(b),f(c)  大小為(  )
A.f(a)>f(b)>f(c)B.f(a)>f(c)>f(b)C.f(b)>f(a)>f(c)D.f(c)>f(a)>f(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在多面體ABCDE中,平面ABE⊥平面ABCD,△ABE是等邊三角形,四邊形ABCD是直角梯形,AB⊥AD,AB⊥BC,AB=AD=$\frac{1}{2}$BC=2,M是EC的中點.
(1)求證:DM∥平面ABE;
(2)求三棱錐M-BDE的體積.

查看答案和解析>>

同步練習(xí)冊答案