已知命題p:方程x2+ax+4=0沒有實數(shù)根,命題q:a2-4a-5≤0,若命題p∧q為真命題,求實數(shù)a的取值范圍.
考點:復(fù)合命題的真假
專題:簡易邏輯
分析:命題p:方程x2+ax+4=0沒有實數(shù)根,可得△<0,解得a的取值范圍.命題q:a2-4a-5≤0,解得a的取值范圍.由于命題p∧q為真命題,可得命題p與q都為真命題,求其交集即可.
解答: 解:命題p:方程x2+ax+4=0沒有實數(shù)根,∴△=a2-16<0,解得-4<a<4.
命題q:a2-4a-5≤0,解得-1≤a≤5.
∵命題p∧q為真命題,∴命題p與q都為真命題,∴
-4<a<4
-1≤a≤5
,解得-1≤a<4.
∴實數(shù)a的取值范圍是[-1,4).
點評:本題考查了一元二次方程的實數(shù)根與判別式的關(guān)系、一元二次不等式的解法、復(fù)合命題真假的判定方法,考查了推理能力和計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=xlnx,則這個函數(shù)在點(1,0)處的切線方程是( 。
A、y=2x-2
B、y=2x+2
C、y=x-1
D、y=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的多面體中,四邊形ABCD為正方形,四邊形ADPQ是直角梯形,AD⊥DP,CD⊥平面PDAQ,AB=AQ=
1
2
DP.
(1)求證:棱錐Q-ABCCD與棱錐P-DCQ的體積相等.
(2)求異面直線CP與BQ所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,設(shè)P:函數(shù)y=ax在R上單調(diào)遞減,Q:函數(shù)y=ln(x2+ax+1)的定義域為R,若P與Q有且僅有一個正確,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

扇形AOB中心角為60°,所在圓半徑為
3
,它按如下(Ⅰ)(Ⅱ)兩種方式有內(nèi)接矩形CDEF.
(Ⅰ)矩形CDEF的頂點C、D在扇形的半徑OB上,頂點E在圓弧AB上,頂點F在半徑OA上,設(shè)∠EOB=θ;
(Ⅱ)點M是圓弧AB的中點,矩形CDEF的頂點D、E在圓弧AB上,且關(guān)于直線OM對稱,頂點C、F分別在半徑OB、OA上,設(shè)∠EOM=φ;
試研究(Ⅰ)(Ⅱ)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點M與兩個定點O(0,0),A(3,0)的距離之比為
1
2

(Ⅰ)求動點M的軌跡方程;
(Ⅱ)若點P在動點M的曲線上.求|PO|2+|PA|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱柱ABC-A1B1C1,平面A1ABB1⊥平面ABC,AA1=AB=2,∠A1AB=60°,AC=BC=
2
.O,E分別是AB,CC1中點.
(Ⅰ)求證:OE∥平面A1C1B;
(Ⅱ)求三棱錐B-A1AC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x•ekx(k≠0)((ekx)′=kekx
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,tanA=
1
4
,tanB=
3
5
.若△ABC最大邊的邊長為
17
,則最小邊的邊長為
 

查看答案和解析>>

同步練習(xí)冊答案