【題目】如圖,在三棱錐中, 底面,且 , , 分別是、的中點(diǎn).

(1)求證:平面平面;

(2)求二面角的平面角的大小.

【答案】()證明過程詳見解析;(

【解析】試題分析:()已知SBAB、BC兩兩互相垂直,故可建立空間直角坐標(biāo)系如下圖.根據(jù)線段長度可求出相應(yīng)點(diǎn)的坐標(biāo),從而可推出,則,所以平面平面BCD

)求出兩個平面的法向量,利用法向量夾角與二面角平面角的關(guān)系求出平面角的大。

試題解析:(

又因,所以建立如上圖所示的坐標(biāo)系.

所以A2,0,0),D10,1),,S00,2

易得, , ,

又因,

所以平面平面BCD

)又

設(shè)平面BDE的法向量為,

所以

又因平面SBD的法向量為

所以

所以二面角的平面角的大小為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式.某機(jī)構(gòu)對“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.

年齡(單位:歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計

贊成

不贊成

合計

(Ⅱ)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在[55,65)的概率.

參考數(shù)據(jù)如下:

附臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的觀測值: (其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)過原點(diǎn)作曲線的切線,求切線方程;

(Ⅱ)當(dāng)時,討論曲線與曲線公共點(diǎn)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】喬經(jīng)理到老陳的果園里一次性采購一種水果,他倆商定:喬經(jīng)理的采購價(元/噸)與采購量(噸)之間函數(shù)關(guān)系的圖像如圖中的折線段所示(不包含端點(diǎn)但包含端點(diǎn)).

(1)求之間的函數(shù)關(guān)系式;

(2)已知老陳種植水果的成本是2800元/噸,那么喬經(jīng)理的采購量為多少時,老陳在這次買賣中所獲的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進(jìn)行作業(yè),根據(jù)已往經(jīng)驗,潛水員下潛的平均速度為(米/單位時間),每單位時間的用氧量為(升),在水底作業(yè)10個單位時間,每單位時間用氧量為(升),返回水面的平均速度為(米/單位時間),每單位時間用氧量為(升),記該潛水員在此次考察活動中的總用氧量為(升).

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)若,求當(dāng)下潛速度取什么值時,總用氧量最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) (為實數(shù)).

(1)若,求證:函數(shù)上是增函數(shù);

(2)求函數(shù)上的最小值及相應(yīng)的的值;

(3)若存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某知名品牌汽車深受消費(fèi)者喜愛,但價格昂貴。某汽車經(jīng)銷商推出三種分期付款方式銷售該品牌汽車,并對近期100位采用上述分期付款的客戶進(jìn)行統(tǒng)計分析,得到如下的柱狀圖。已知從三種分期付款銷售中,該經(jīng)銷商每銷售此品牌汽車1輛所獲得的利潤分別是1萬元,2萬元,3萬元。以這100 位客戶所采用的分期付款方式的頻率代替1位客戶采用相應(yīng)分期付款方式的概率。

(Ⅰ)求采用上述分期付款方式銷售此品牌汽車1輛,該汽車經(jīng)銷商從中所獲得的利潤不大于2萬元的概率;

(Ⅱ)求采用上述分期付款方式銷售此品牌汽車1輛,該汽車經(jīng)銷商從中所獲得的利潤的平均值;

(Ⅲ)根據(jù)某稅收規(guī)定,該汽車經(jīng)銷商每月(按30天計)上交稅收的標(biāo)準(zhǔn)如下表:

若該經(jīng)銷商按上述分期付款方式每天平均銷售此品牌汽車3輛,估計其月純收入(純收入=總利潤-上交稅款)的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年五一假期期間,高速公路車輛較多。某調(diào)査公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào) 査,將他們在某段高速公路的車速分成六段: 后得到如圖的頻率分布直方圖.

(Ⅰ)求這40輛小型車輛車速的眾數(shù)和中位數(shù)以及平均數(shù)的估計值.

(Ⅱ)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中在校學(xué)生2 000人,高一年級與高二年級人數(shù)相同并且都比高三年級多1人.為了響應(yīng)市教育局“陽光體育”號召,該校開展了跑步和跳繩兩項比賽,要求每人都參加而且只參加其中一項,各年級參與項目人數(shù)情況如下表:

  年級

項目  

高一年級

高二年級

高三年級

跑步

a

b

c

跳繩

x

y

z

其中a∶b∶c=2∶3∶5,全校參與跳繩的人數(shù)占總?cè)藬?shù)的. 為了了解學(xué)生對本次活動的滿意度,采用分層抽樣從中抽取一個200人的樣本進(jìn)行調(diào)查,則高二年級中參與跑步的同學(xué)應(yīng)抽取多少人?

查看答案和解析>>

同步練習(xí)冊答案