【題目】若定義在上的函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若、、滿足,則稱比更接近.當(dāng),試比較和哪個更接近,并說明理由.
【答案】(1)當(dāng)時,的單調(diào)增區(qū)間為;當(dāng)時,的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(2)比更接近,理由見解析.
【解析】
(1)對求導(dǎo),分與進(jìn)行討論,可得其單調(diào)區(qū)間;
(2)設(shè),,分別對 與求導(dǎo),可得當(dāng)時,
,,當(dāng)時,可得,
設(shè),對其求導(dǎo)可得答案.
解:(1),
①當(dāng)時,,函數(shù)在上單調(diào)遞增;
②當(dāng)時,令得,
令,得,單調(diào)遞增,
令,得,單調(diào)遞減;
綜上,當(dāng)時,函數(shù)的單調(diào)增區(qū)間為;
當(dāng)時,函數(shù)的單調(diào)增區(qū)間為,
單調(diào)減區(qū)間為.
(2)設(shè),,
,在,上為減函數(shù),又(e),
當(dāng)時,.
,在,上為增函數(shù),又(e),
當(dāng)時,,在上為增函數(shù),
.
當(dāng)時,,
設(shè),則,
在是減函數(shù),(e),
在是減函數(shù),(e),
,比更接近.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的參數(shù)方程為:,為參數(shù)點的極坐標(biāo)為,曲線C的極坐標(biāo)方程為.
Ⅰ試將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并求曲線C的焦點在直角坐標(biāo)系下的坐標(biāo);
Ⅱ設(shè)直線l與曲線C相交于兩點A,B,點M為AB的中點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大值為時,三棱錐的外接球的表面積為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,南寧大力實施“二產(chǎn)補短板、三產(chǎn)強優(yōu)勢、一產(chǎn)顯特色”策略,著力發(fā)展實體經(jīng)濟(jì),工業(yè)取得突飛猛進(jìn)的發(fā)展.逐步形成了以電子信息、機械裝備、食品制糖、鋁深加工等為主的4大支柱產(chǎn)業(yè).廣西洋浦南華糖業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如下表所示,已知.
(1)求出q的值;
(2)已知變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價x(元)的線性回歸方程;
(3)用表示用(2)中所求的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計值.當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取3個,求“好數(shù)據(jù)”個數(shù)的數(shù)學(xué)期望Eξ.
(參考公式:線性回歸方程中的最小二乘估計分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點P在底面上的射影為的中點G,點E在線段上,且.
(1)求證:平面.
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠采用甲、乙兩種不同生產(chǎn)方式生產(chǎn)某零件,現(xiàn)對兩種生產(chǎn)方式所生產(chǎn)的這種零件的產(chǎn)品質(zhì)量進(jìn)行對比,其質(zhì)量按測試指標(biāo)可劃分為:指標(biāo)在區(qū)間100的為一等品;指標(biāo)在區(qū)間的為二等品現(xiàn)分別從甲、乙兩種不同生產(chǎn)方式所生產(chǎn)的零件中,各自隨機抽取100件作為樣本進(jìn)行檢測,測試指標(biāo)結(jié)果的頻率分布直方圖如圖所示:
若在甲種生產(chǎn)方式生產(chǎn)的這100件零件中按等級,利用分層抽樣的方法抽取10件,再從這10件零件中隨機抽取3件,求至少有1件一等品的概率;
將頻率分布直方圖中的頻率視作概率,用樣本估計總體若從該廠采用乙種生產(chǎn)方式所生產(chǎn)的所有這種零件中隨機抽取3件,記3件零件中所含一等品的件數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)設(shè)函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)如果對所有的≥0,都有≤,求的最小值;
(Ⅲ)已知數(shù)列中, ,且,若數(shù)列的前n項和為,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若函數(shù)與的圖像在點處有相同的切線,求的值;
(Ⅱ)當(dāng)時,恒成立,求整數(shù)的最大值;
(Ⅲ)證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com