設(shè)f1(x)=cosx,定義fn+1(x)為fn(x)的導(dǎo)數(shù),即fn+1(x)=f′n(x),n∈N*,若△ABC的內(nèi)角A滿足f1(A)+f2(A)+…+f2014(A)=
1
3
,則cos2A的值是
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:由已知,f1(x)=cosx,f2(x)=f1′(x)=-sinx,f3(x)=f2′(x)=-cosx,f4(x)=f3′(x)=sinx,f5(x)=f4′(x)=cosx,發(fā)現(xiàn)fn(x)以4為周期,結(jié)果循環(huán)出現(xiàn),利用此規(guī)律將2014轉(zhuǎn)化為n=1,2的情況求解.
解答: 解:∵f1(x)=cosx,
∴f2(x)=f1′(x)=-sinx,
f3(x)=f2′(x)=-cosx,
f4(x)=f3′(x)=sinx,
f5(x)=f4′(x)=cosx,

從第五項(xiàng)開始,fn(x)的解析式重復(fù)出現(xiàn),每4次一循環(huán).
∴f1(x)+f2(x)+f3(x)+f4(x)=0
∴f2014(x)=f4×503+2(x)=f1(x)+f2(x)=cosx-sinx,
∵f1(A)+f2(A)+…+f2014(A)=
1
3
,
∴cosA-sinA=
1
3
,
1-2sinAcosA=
1
9
,
2sinAcosA=
8
9
,
cosA>0,sinA>0,
(cosA+sinA)2=
17
9

cosA+sinA=
17
3

cos2A-sin2A=
1
3
×
17
3
=
17
9

即cos2A=
17
9

故答案為:
17
9
點(diǎn)評(píng):考查學(xué)生會(huì)進(jìn)行導(dǎo)數(shù)的運(yùn)算,會(huì)根據(jù)條件歸納總結(jié)得到結(jié)論,并利用得到的結(jié)論解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=3x2與x軸及直線x=1所圍成的圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:x2+
y2
b2
=1(0<b<1)的上頂點(diǎn)為B(0,b),橢圓C上到點(diǎn)B的距離最大的點(diǎn)恰為下頂點(diǎn)(0,-b),則橢圓C的離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
AC
、
AD
AB
在正方形網(wǎng)格中的位置如圖所示,若
AC
AB
AD
,則λ+μ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,甲、乙、丙中的四邊形ABCD都是邊長(zhǎng)為2的正方形,其中甲、乙兩圖中陰影部分分別以AB的中點(diǎn)、B點(diǎn)為頂點(diǎn)且開口向上的拋物線(皆過D點(diǎn))下方的部分,丙圖中陰影部分是以C為圓心、半徑為2的圓弧下方的部分.三只麻雀分別落在這三塊正方形木板上休息,且它們落在所在木板的任何地方是等可能的,若麻雀落在甲、乙、丙三塊木板上陰影部分的概率分別是P1、P2、P3,則P1、P2、P3的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過拋物線y2=4x的焦點(diǎn)F且傾斜角為60°的直線l與拋物線在第一、四象限分別交于A、B兩點(diǎn),則
|AF|
|BF|
等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面上,
AB1
AB2
,|
MB1
|=1,|
MB2
|=2,
AP
=
AB1
+
AB2
.若|
MP
|<1,則|
MA
|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

積分∫
 
π
2
0
cos2x
cosx+sinx
dx=( 。
A、-1
B、0
C、1
D、
π
2

查看答案和解析>>

同步練習(xí)冊(cè)答案