【題目】已知曲線上的點到點的距離比到直線的距離小,為坐標(biāo)原點.

1)過點且傾斜角為的直線與曲線交于、兩點,求的面積;

2)設(shè)為曲線上任意一點,點,是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長恒為定值?若存在,求出的方程和定值;若不存在,說明理由.

【答案】1;(2)直線存在,其方程為,定值為.

【解析】

1)利用拋物線的定義可求得曲線的方程,由題意可得直線的方程為,設(shè)點、,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,利用三角形的面積公式可求得的面積;

2)假設(shè)滿足條件的直線存在,其方程為,并設(shè)點,求出以為直徑的圓的方程,將代入圓的方程,求出弦長的表達式,進而可求得的值,由此可求得直線的方程.

1)依題意得,曲線上的點到點的距離與到直線的距離相等,

所以曲線的方程為:.

過點且傾斜角為的直線方程為,

設(shè),聯(lián)立,得,

,,則;

2)假設(shè)滿足條件的直線存在,其方程為,設(shè)點,

則以為直徑的圓的方程為,

將直線代入,得,

,

設(shè)直線與以為直徑的圓的交點為、,

,,

于是有,

當(dāng),即時,為定值.

故滿足條件的直線存在,其方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱中,側(cè)棱與底面垂直,且,,、分別是、的中點,點在線段上,且.

1)求證:不論取何值,總有;

2)當(dāng)時,求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知6名某疾病病毒密切接觸者中有1名感染病毒,其余5名健康,需要通過化驗血液來確定感染者.血液化驗結(jié)果呈陽性的即為感染者,呈陰性即為健康.

1)若從這6名密切接觸者中隨機抽取3名,求抽到感染者的概率;

2)血液化驗確定感染者的方法有:逐一化驗;分組混合化驗:先將血液分成若干組,對組內(nèi)血液混合化驗,若化驗結(jié)果呈陰性,則該組血液不含病毒;若化驗結(jié)果呈陽性,則對該組的備份血液逐一化驗,直至確定感染者.

i)采取逐一化驗,求所需檢驗次數(shù)的數(shù)學(xué)期望;

ii)采取平均分組混合化驗(每組血液份數(shù)相同),依據(jù)所需化驗總次數(shù)的期望,選擇合理的平均分組方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的內(nèi)角A,B,C所對的邊分別是a,b,c,其面積S

1)若ab,求cosB

2)求sinA+B+sinBcosB+cosBA)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和的直角坐標(biāo)方程;

2)已知曲線的極坐標(biāo)方程為,點是曲線的交點,點是曲線的交點,、均異于原點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,則當(dāng)時,討論的單調(diào)性;

(2)若,且當(dāng)時,不等式在區(qū)間上有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足,設(shè).

(Ⅰ)求證:數(shù)列是等比數(shù)列;

(Ⅱ)若,求實數(shù)的最小值;

(Ⅲ)當(dāng)時,給出一個新數(shù)列,其中,設(shè)這個新數(shù)列的前項和為,若可以寫成,)的形式,則稱為“指數(shù)型和”.問中的項是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是自然對數(shù)的底數(shù),,已知函數(shù),.

1)若函數(shù)有零點,求實數(shù)的取值范圍;

2)對于,證明:當(dāng)時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱ABCA1B1C1的底面是正三角形,側(cè)面BB1C1C是矩形,MN分別為BC,B1C1的中點,PAM上一點.過B1C1P的平面交ABE,交ACF

1)證明:AA1//MN,且平面A1AMN⊥平面EB1C1F;

2)設(shè)O為△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=,求四棱錐BEB1C1F的體積.

查看答案和解析>>

同步練習(xí)冊答案