如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=

(1)求證:平面EAB⊥平面ABCD
(2)求二面角A-EC-D的余弦值

(1)先證EO⊥平面ABCD即可得證  (2)

解析試題分析:(1)證明:取AB的中點(diǎn)O,連接EO,CO
△AEB為等腰直角三角形
∴EO⊥AB,EO=1
又∵AB=BC,∠ABC=60°,∴△ABC是等邊三角形,
,又
∵EO⊥平面ABCD,又EO平面EAB,∴平面EAB⊥平面ABCD
(2)以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),OB所在直線為y軸,OE所在直線為z軸,如圖建系則
,
(0,2,0)

設(shè)平面DCE的法向量為,則,即,解得:

同理求得平面EAC的一個(gè)法向量為
,所以二面角A-EC-D的余弦值為
考點(diǎn):用空間向量求平面間的夾角 平面與平面垂直判定 二面角的平面角及求法
點(diǎn)評(píng):本題給出特殊四棱錐,求證面面垂直并求二面角的余弦值,著重考查了空間線面垂直、
面面垂直的判定與性質(zhì)和利用空間向量的方法求面面所成角的知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在長(zhǎng)方體ABCD—A1B1C1D1中,AD=AA1=1,AB=2,E為AB的中點(diǎn),F(xiàn)為CC1的中點(diǎn).

(1)證明:B F//平面E CD1
(2)求二面角D1—EC—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在長(zhǎng)方體中,點(diǎn)在棱上.

(1)求異面直線所成的角;
(2)若二面角的大小為,求點(diǎn)到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是AB, PC的中點(diǎn)

(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;    
(3)若ÐPDA=45°,求EF與平面ABCD所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖:在多面體EF-ABCD中,四邊形ABCD是平行四邊形,△EAD為正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求證:BFAD;
(Ⅱ)求直線BD與平面BCF所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD =12 BC. 點(diǎn)E、F分別是棱PB、邊CD的中點(diǎn).(1)求證:AB⊥面PAD; (2)求證:EF∥面PAD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直角梯形ABCD中,,,且E、F分別為線段CD、AB上的點(diǎn),且.將梯形沿EF折起,使得平面平面BCEF,折后BD與平面ADEF所成角正切值為

(Ⅰ)求證:平面BDE;
(Ⅱ)求平面BCEF與平面ABD所成二面角(銳角)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
如圖1,在等腰梯形CDEF中,CB、DA是梯形的高,,,現(xiàn)將梯形沿CB、DA折起,使,得一簡(jiǎn)單組合體如圖2示,已知分別為的中點(diǎn).

圖1                                圖2
(1)求證:平面
(2)求證:;
(3)當(dāng)多長(zhǎng)時(shí),平面與平面所成的銳二面角為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖1,在Rt中,.D、E分別是上的點(diǎn),且,將沿折起到的位置,使,如圖2.

(Ⅰ)求證:平面平面
(Ⅱ)若,求與平面所成角的余弦值;
(Ⅲ)當(dāng)點(diǎn)在何處時(shí),的長(zhǎng)度最小,并求出最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案