4.函數(shù)f(x)=x+$\frac{lnx}{x}$在x=1處的切線與兩坐標(biāo)軸圍成的三角形的面積為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{3}{2}$D.$\frac{5}{4}$

分析 依題意,可得f(1)=1,f'(1)=2,從而可得所求的切線方程為y-1=2(x-1),繼而可得它與兩坐標(biāo)軸圍成的三角形的面積.

解答 解:$f(x)=x+\frac{lnx}{x}$,
則$f'(x)=1+\frac{{{l}-lnx}}{x^2}$,
因此f(1)=1,f'(1)=2,
故切線方程為y-1=2(x-1).
令x=0,可得y=-1;令y=0,可得$x=\frac{1}{2}$.
故切線與兩坐標(biāo)圍成的三角形面積為$\frac{1}{2}×1×\frac{1}{2}=\frac{1}{4}$.
故選:B.

點評 本題考查利用導(dǎo)數(shù)研究曲線上某點的切線方程,考查三角形面積的計算,求得函數(shù)f(x)=x+$\frac{lnx}{x}$在x=1處的切線方程是關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{mx+n}{{x}^{2}+1}$(m,n為常數(shù))是定義在[-1,1]上的奇函數(shù),且f(-1)=-$\frac{1}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)解關(guān)于x的不等式f(2x-1)<-f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知底角為45°的等腰梯形ABCD,底邊BC長為7cm,腰長為2$\sqrt{2}$cm,當(dāng)一條垂直于底邊BC(垂足為F)的直線l從左至右移動(與梯形ABCD有公共點)時,直線l把梯形分成兩部分,令BF=x,試寫出左邊部分的面積y與x的函數(shù)解析式,并畫出大致圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)計一個計算1×3×5×7×9×11×13的算法.如圖給出了程序的一部分.在?填入的最小的正整數(shù)是14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在空間直角坐標(biāo)系O-xyz中,四面體S-ABC各頂點坐標(biāo)分別是S(1,1,2),A(3,3,2),B(3,3,0),C(1,3,2),則該四面體外接球的表面積是( 。
A.16πB.12πC.4$\sqrt{3}$πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.對于函數(shù)f(x),若在定義域內(nèi)存在實數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.
(1)已知二次函數(shù)f(x)=ax2+2bx-4a(a,b∈R),試判斷f(x)是否為“局部奇函數(shù)”?并說明理由;
(2)設(shè)f(x)=2x+m是定義在[-1,2]上的“局部奇函數(shù)”,求實數(shù)m的取值范圍;
(3)設(shè)f(x)=4x-m•2x+1+m2-3為定義域R上的“局部奇函數(shù)”,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x∈Z|-1<x<3},B={x∈R|x2+x-6<0},則A∩B=( 。
A.{x|-1<x<2}B.{x|-3<x<3}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.?dāng)?shù)列{an}通項an=2-($\frac{x+3}{x}$)n,若$\underset{lim}{n→∞}$an=2,則x的取值范圍是(  )
A.(0,-$\frac{3}{2}$]B.(0,-$\frac{3}{2}$)C.(-∞,-$\frac{3}{2}$)D.(-∞,-$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}f(x-3),x>0\\{2^x}+\int_0^{\frac{π}{6}}{cos3tdt,x≤0}\end{array}$,則f(2017)=$\frac{7}{3}$.

查看答案和解析>>

同步練習(xí)冊答案