Processing math: 42%
18.已知兩個(gè)等差數(shù)列{an},{bn},它們的前n項(xiàng)和分別是Sn,Tn,若SnTn=2n+33n1,則a77=2938

分析 利用等差數(shù)列的通項(xiàng)公式、求和公式及其性質(zhì)即可得出.

解答 解:由等差數(shù)列的性質(zhì)可得:a77=13a1+a132131+132=S13T13=2938
故答案為2938

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式、求和公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知定義在R上的函數(shù)f(x)=|x-m|+|x|,m∈N*,存在實(shí)數(shù)x使f(x)<2成立.
(1)求實(shí)數(shù)m的值;
(2)若α,β>1,f(α)+f(β)=4,求證:\frac{4}{α}+\frac{1}{β}>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在數(shù)列{an}中,a1=1,a2=5,an+2=an+1-an(n∈N+),則a2017=( �。�
A.5B.-5C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若3x=a,5x=b,則45x等于( �。�
A.a2bB.ab2C.a2+bD.a2+b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且nan+1=2Sn(n∈N*),數(shù)列{bn}滿足b1=\frac{1}{2},b2=\frac{1}{4},對任意n∈N+,都有bn+12=bn•bn+2
(I)求數(shù)列{an},{bn}的通項(xiàng)公式;
(II)設(shè){anbn}的前n項(xiàng)和為Tn,若Tn\frac{4-λ}{2}對任意的n∈N+恒成立,求λ得取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知tanα=3,α∈(0,π),則cos({\frac{5π}{2}+2α)=(  )
A.\frac{3}{5}B.\frac{4}{5}C.-\frac{3}{5}D.-\frac{4}{5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=\sqrt{x+5}+\frac{1}{x-2}
(1)求函數(shù)的定義域;
(2)求f(-4),f(\frac{2}{3})的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若定義在R上的函數(shù)f(x)滿足f(x)=f(-x),且f(x)在(0,+∞)上是減函數(shù),又f(-3)=1,則不等式f(x)<1的解集為(  )
A.{x|x>3或-3<x<0}B.{x|x<3或0<x<-3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)解不等式:|x-1|+|x|<4;
(2)已知a>2,求證:?x∈R,|ax-2|+a|x-2|>2恒成立.

查看答案和解析>>

同步練習(xí)冊答案