【題目】已知函數(shù).

(1)若函數(shù)在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;

(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

【答案】(1) ;(2) .

【解析】試題分析:(1)由題意得導(dǎo)函數(shù)在其定義域內(nèi)恒非負(fù),再根據(jù)二次方程恒成立條件得實(shí)數(shù)的取值范圍;(2)將不等式有解問(wèn)題,利用參變分離法轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問(wèn)題,再利用導(dǎo)數(shù)求對(duì)應(yīng)函數(shù)最值,即得實(shí)數(shù)的取值范圍.

試題解析:(1), ,

因?yàn)楹瘮?shù)在其定義域內(nèi)為增函數(shù),

所以 恒成立,

當(dāng)時(shí),顯然不成立;

當(dāng)時(shí), ,要滿(mǎn)足, 時(shí)恒成立,則,

.

(2)設(shè)函數(shù) ,

則原問(wèn)題轉(zhuǎn)化為在上至少存在一點(diǎn),使得,即.

時(shí), ,

,∴, ,則,不符合條件;

時(shí),

,可知,

單調(diào)遞增, ,整理得.

綜上所述, .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的焦距為2,且過(guò)點(diǎn).

(1)求橢圓的方程;

(2)若點(diǎn)分別是橢圓的左右頂點(diǎn),直線經(jīng)過(guò)點(diǎn)且垂直與軸,點(diǎn)是橢圓上異于的任意一點(diǎn),直線于點(diǎn).

①設(shè)直線的斜率為,直線的斜率為,求證:為定值;

②設(shè)過(guò)點(diǎn)垂直于的直線為 ,求證:直線過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對(duì)應(yīng)值如下表:

x

y

﹣1

1

3

1

﹣1

1

3


(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個(gè)解析式.
(2)根據(jù)(1)的結(jié)果,若函數(shù)y=f(kx)(k>0)周期為 ,當(dāng) 時(shí),方程f(kx)=m恰有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿(mǎn)分12分,1小問(wèn)5分,2小問(wèn)7分

圖,橢圓的左、右焦點(diǎn)分別為過(guò)的直線交橢圓于兩點(diǎn),且

1求橢圓的標(biāo)準(zhǔn)方程

2求橢圓的離心率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 若對(duì)任意的正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱(chēng){an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項(xiàng)和為Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設(shè){an}是等差數(shù)列,其首項(xiàng)a1=1,公差d<0,若{an}是“H數(shù)列”,求d的值;
(3)證明:對(duì)任意的等差數(shù)列{an},總存在兩個(gè)“H數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x∈R,[x]表示不超過(guò)x的最大整數(shù),若函數(shù) 有且僅有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空間四邊形ABCD中,AB=CD且異面直線AB與CD所成的角為30°,E,F(xiàn)為BC和AD的中點(diǎn),則異面直線EF和AB所成的角為(
A.15°
B.30°
C.45°或75°
D.15°或75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對(duì)應(yīng)值如下表:

x

y

﹣1

1

3

1

﹣1

1

3


(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個(gè)解析式.
(2)根據(jù)(1)的結(jié)果,若函數(shù)y=f(kx)(k>0)周期為 ,當(dāng) 時(shí),方程f(kx)=m恰有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,真命題是(
A.若 互為負(fù)向量,則 + =0
B.若 =0,則 = =
C.若 , 都是單位向量,則 =1
D.若k為實(shí)數(shù)且k = ,則k=0或 =

查看答案和解析>>

同步練習(xí)冊(cè)答案