【題目】如圖,在平面直角坐標(biāo)系中,橢圓的焦距為2,且過點(diǎn).

(1)求橢圓的方程;

(2)若點(diǎn)分別是橢圓的左右頂點(diǎn),直線經(jīng)過點(diǎn)且垂直與軸,點(diǎn)是橢圓上異于的任意一點(diǎn),直線于點(diǎn).

①設(shè)直線的斜率為,直線的斜率為,求證:為定值;

②設(shè)過點(diǎn)垂直于的直線為 ,求證:直線過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

【答案】(1);(2),.

【解析】試題分析:(1)根據(jù)條件列方程組,解得,(2)①設(shè),則可由直線交點(diǎn)得,再根據(jù)斜率公式化簡,最后利用點(diǎn)P在橢圓上得定值;②先探求定點(diǎn)為,再根據(jù)點(diǎn)斜式寫出直線方程,最后令y=0解得x=-1.

試題解析:(1)由題意橢圓的焦距為2,且過點(diǎn),

所以,解得,

所以橢圓的標(biāo)準(zhǔn)方程為.

(2)①設(shè),則直線的方程為,

,因?yàn)?/span>,因?yàn)?/span>

所以,因?yàn)?/span>在橢圓上,所以

所以為定值,

②直線的斜率為,直線的斜率為

則直線的方程為,

所以直線過定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是公差不為0的等差數(shù)列的前項(xiàng)和,且成等比數(shù)列,.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)是數(shù)列的前項(xiàng)和,求使得對所有都成立的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近幾年,電商行業(yè)的蓬勃發(fā)展也帶動了快遞業(yè)的高速發(fā)展.某快遞配送站每天至少要完成1800件包裹的配送任務(wù),該配送站有8名新手快遞員和4名老快遞員,但每天最多安排10人進(jìn)行配送.已知每個新手快遞員每天可配送240件包裹,日工資320元;每個老快遞員每天可配送300件包裹,日工資520元.

(1)求該配送站每天需支付快遞員的總工資最小值;

(2)該配送站規(guī)定:新手快遞員某個月被評為“優(yōu)秀”,則其下個月的日工資比這個月提高12%.那么新手快遞員至少連續(xù)幾個月被評為“優(yōu)秀”,日工資會超過老快遞員?

(參考數(shù)據(jù): , , .)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益函數(shù)為R(x)= ,其中x是儀器的產(chǎn)量(單位:臺);
(1)將利潤f(x)表示為產(chǎn)量x的函數(shù)(利潤=總收益﹣總成本);
(2)當(dāng)產(chǎn)量x為多少臺時,公司所獲利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域?yàn)镽,f(x)= ,且對任意的x∈R都有f(x+1)=﹣ ,若在區(qū)間[﹣5,1]上函數(shù)g(x)=f(x)﹣mx+m恰有5個不同零點(diǎn),則實(shí)數(shù)m的取值范圍是(
A.[﹣ ,﹣
B.(﹣ ,﹣ ]
C.(﹣ ,0]
D.(﹣ ,﹣ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2ax+a.
(1)若對任意的實(shí)數(shù)x都有f(1+x)=f(1﹣x)成立,求實(shí)數(shù)a的值;
(2)若f(x)在區(qū)間[1,+∞)上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)x∈[﹣1,1]時,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在區(qū)間D上,如果函數(shù)f(x)為減函數(shù),而xf(x)為增函數(shù),則稱f(x)為D上的弱減函數(shù).若f(x)=
(1)判斷f(x)在區(qū)間[0,+∞)上是否為弱減函數(shù);
(2)當(dāng)x∈[1,3]時,不等式 恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)g(x)=f(x)+k|x|﹣1在[0,3]上有兩個不同的零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為得到函數(shù)y=sin(x+ )的圖象,可將函數(shù)y=sinx的圖象向左平移m個單位長度,或向右平移n個單位長度(m,n均為正數(shù)),則|m﹣n|的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;

(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案