在平面直角坐標(biāo)系中,直線的參數(shù)方程為:為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為
(Ⅰ)求曲線的平面直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的值.
(Ⅰ);(Ⅱ).

試題分析:(Ⅰ)直接根據(jù)極坐標(biāo)方程與直角坐標(biāo)的轉(zhuǎn)換關(guān)系式結(jié)合三角函數(shù)中的兩角和與差的三角函數(shù)公式即可實(shí)現(xiàn)將曲線的參數(shù)方程化為直角坐標(biāo)方程;(Ⅱ)先將直線的參數(shù)方程與曲線的直角坐標(biāo)方程聯(lián)立轉(zhuǎn)化為含的一元二次方程,然后根據(jù)參數(shù)方程中的相關(guān)理論直接求的值.
試題解析:(Ⅰ)由,得,
當(dāng)時(shí),得,
對(duì)應(yīng)直角坐標(biāo)方程為:.
當(dāng),有實(shí)數(shù)解,說明曲線過極點(diǎn),而方程所表示的曲線也過原點(diǎn).
∴曲線的直角坐標(biāo)方程為.        3分
(Ⅱ)把直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,得,
,由于,故可設(shè)是上述方程的兩實(shí)根,
.      5分
∵直線過點(diǎn),
∴由的幾何意義,可得.    7分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,已知圓的參數(shù)方程為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓的極坐標(biāo)方程;
(Ⅱ)直線,射線與圓的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為參數(shù)).以O(shè)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)直線的極坐標(biāo)方程是,射線與圓C的交點(diǎn)為O,P,與直線的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知曲線C的參數(shù)方程是為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,并取相同的長(zhǎng)度單位建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程是           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

坐標(biāo)系與參數(shù)方程.
在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為.
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為,求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知曲線C的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:),則直線l與曲線C相交所成的弦的弦長(zhǎng)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,曲線 與ρcosθ=-1 的交點(diǎn)的極坐標(biāo)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,過點(diǎn)且垂直于極軸的直線方程的極坐標(biāo)方程是           (請(qǐng)選擇正確標(biāo)號(hào)填空) (1)。2)。3)。4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在極坐標(biāo)系中,圓心為,且過極點(diǎn)的圓的方程是  (       )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案