【題目】某車間的一臺機(jī)床生產(chǎn)出一批零件,現(xiàn)從中抽取8件,將其編為, ,…, ,測量其長度(單位: ),得到如表中數(shù)據(jù):
其中長度在區(qū)間內(nèi)的零件為一等品.
(1)從上述8個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件為一等品的概率;
(2)從一等品零件中,隨機(jī)抽取3個(gè).
①用零件的編號列出所有可能的抽取結(jié)果;
②求這3個(gè)零件長度相等的概率.
【答案】(1)(2)①見解析②
【解析】試題分析:
(1)8個(gè)零件中,長度在區(qū)間內(nèi)的有5個(gè),因此由古典概型概率公式可得;
(2)①任取3個(gè),可按樹形結(jié)構(gòu)寫出所有可能;②在①中寫出的所有可能中長度相等的有4種,由此可得概率.
試題解析:
(1)由所給數(shù)據(jù)可知,一等品零件共5個(gè),記“從8個(gè)零件中,隨機(jī)抽取一個(gè)為一等品”為事件,則.
(2)①一等品零件的編號為, , , , ,從這5個(gè)一等品零件中隨機(jī)抽取3個(gè),所有可能的結(jié)果有: , , , , , , , , , 共10種.
②記“從一等品零件中,隨機(jī)抽取3個(gè),且這三個(gè)零件長度相等”為事件,則所有可能的結(jié)果有: , , , 共4種.
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;
(2)當(dāng)時(shí),
① 若對于任意,恒有,求的取值范圍;
② 若,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) .
(Ⅰ)求曲線 在點(diǎn) 處的切線方程;
(Ⅱ)若 對 恒成立,求實(shí)數(shù) 的取值范圍;
(Ⅲ)求整數(shù) 的值,使函數(shù) 在區(qū)間 上有零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)某中草藥材的銷售量與年份有關(guān),下表是近五年的部分統(tǒng)計(jì)數(shù)據(jù):
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
銷售量(噸) | 114 | 115 | 116 | 116 | 114 |
(1)利用所給數(shù)據(jù)求年銷售量與年份之間的回歸直線方程;
(2)利用(1)中所求出的直線方程預(yù)測該地2018年的中草藥的銷售量.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.
(Ⅰ)求ω;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),再將得到的圖象向左平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g(x)在[﹣ , ]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),圓
(1)過點(diǎn)的圓的切線只有一條,求的值及切線方程;
(2)若過點(diǎn)且在兩坐標(biāo)軸上截距相等的直線被圓截得的弦長為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=log2( +a).
(1)當(dāng)a=5時(shí),解不等式f(x)>0;
(2)若關(guān)于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個(gè)元素,求a的取值范圍.
(3)設(shè)a>0,若對任意t∈[ ,1],函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知三點(diǎn)A(-1,0)、B(t,2)、C(2,1),t∈R,O為坐標(biāo)原點(diǎn)
(I)若△ABC是∠B為直角的直角三角形,求t的值
(Ⅱ)若四邊形ABCD是平行四邊形,求的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為奇函數(shù),為實(shí)常數(shù).
(1)求的值;
(2)證明:在區(qū)間內(nèi)單調(diào)遞增;
(3)若對于區(qū)間上的每一個(gè)的值,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com