【題目】已知橢圓經(jīng)過(guò)點(diǎn),右焦點(diǎn)到直線的距離為3

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)A作兩條互相垂直的直線,分別交橢圓于MN兩點(diǎn),求證:直線MN恒過(guò)定點(diǎn)

【答案】12)見(jiàn)解析

【解析】

1)由題可知值,由右焦點(diǎn)到直線的距離為3表示,和 構(gòu)建方程組,求得,即可求得橢圓E的標(biāo)準(zhǔn)方程;

2)設(shè)直線的方程為,聯(lián)立直線方程與橢圓方程,即可表示點(diǎn)M的坐標(biāo),由,垂直,則將M坐標(biāo)中的k換成,即可表示N點(diǎn)坐標(biāo),再利用兩點(diǎn)坐標(biāo)分別表示,觀察即可證明.

1)由題意知,,,

解得,

所以橢圓的標(biāo)準(zhǔn)方程為

2)顯然直線,的斜率存在.

設(shè)直線的方程為

聯(lián)立方程組,得,

解得,

所以

,垂直,可得直線的方程為

替換前式中的k,可得,

,

所以,故直線MN恒過(guò)定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足,a11a2,且[3+(-1n]an22an2[(-1n1]0nN*,記T2n為數(shù)列{an}的前2n項(xiàng)和,數(shù)列{bn}是首項(xiàng)和公比都是2的等比數(shù)列,則使不等式·<1成立的最小整數(shù)n為(

A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體外接球的表面積是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù),是函數(shù)的兩個(gè)零點(diǎn).

1)求實(shí)數(shù)a的取值范圍;

2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),右焦點(diǎn)到直線的距離為3

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)A作兩條互相垂直的直線,分別交橢圓于MN兩點(diǎn),求證:直線MN恒過(guò)定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在邊長(zhǎng)為2的菱形中,,將沿對(duì)角線折起到的位置,使平面平面,的中點(diǎn),⊥平面,且,如圖2

1)求證:平面;

2)求平面與平面所成角的余弦值;

3)在線段上是否存在一點(diǎn),使得⊥平面?若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校要在一條水泥路邊安裝路燈,其中燈桿的設(shè)計(jì)如圖所示,AB為地面,CDCE為路燈燈桿,CDAB,∠DCE=,在E處安裝路燈,且路燈的照明張角∠MEN=.已知CD=4m,CE=2m.

(1)當(dāng)MD重合時(shí),求路燈在路面的照明寬度MN;

(2)求此路燈在路面上的照明寬度MN的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,橢圓截直線所得的線段的長(zhǎng)度為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的點(diǎn),是坐標(biāo)原點(diǎn),若,判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案