已知直線l與平面α平行,則下列結(jié)論錯(cuò)誤的是(  )
A、直線l與平面α沒(méi)有公共點(diǎn)
B、存在經(jīng)過(guò)直線l的平面與平面α平行
C、直線l與平面α內(nèi)的任意一條直線平行
D、直線l上所有的點(diǎn)到平面α的距離都相等
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專(zhuān)題:空間位置關(guān)系與距離
分析:根據(jù)線面平行的性質(zhì)對(duì)四個(gè)選項(xiàng)分別分析解答.
解答: 解:因?yàn)橹本l與平面α平行,所以直線l與平面α沒(méi)有公共點(diǎn),A正確;
如果與直線l相交且也與平面α平行的直線b,那么直線l,b確定的平面與α平行;故存在經(jīng)過(guò)直線l的平面與平面α平行;故B正確;
直線l與α內(nèi)的任意一條直線的我只關(guān)心是平行或者異面;故C錯(cuò)誤;
過(guò)直線l與α垂直的平面與α相交于直線b,則l∥b,直線l上所有的點(diǎn)到b的距離相等,所以直線l上所有的點(diǎn)到平面α的距離都相等;故D正確;
故選:C.
點(diǎn)評(píng):本題考查了線面平行的性質(zhì);關(guān)鍵是明確線面平行的定義及性質(zhì),將問(wèn)題轉(zhuǎn)化為線線問(wèn)題解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx-x2+ax.
(1)若函數(shù)f(x)在(0,1]上單調(diào)遞增,試求a的取值范圍;
(2)設(shè)函數(shù)f(x)在點(diǎn)C(x0,f(x0))(x0為非零常數(shù))處的切線為l,證明:函數(shù)f(x)圖象上的點(diǎn)都不在直線l的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面α,β,γ,δ,其中γ∩δ=l,α∩γ=a,β∩γ=a′,a∥a′;α∩δ=b,β∩δ=b′,b∥b′.上述條件能否保證有α∥β?若能,給出證明;若不能,添加適當(dāng)?shù)臈l件,保證有α∥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}滿足a1=1,an+1=f(
1
an
)(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=
1
anan+1
,Sn=b1+b2+…bn,若Sn
m-2015
2
對(duì)一切n∈N*成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用定義證明函數(shù)f(x)=1-
2
x
在(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明f(x)=
x
在定義域?yàn)閇0,+∞)內(nèi)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ax5+bx3+2,若f(-3)=15,則f(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,b>0,求證:(a3+b3 
1
3
<(a2+b2 
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求和:
12
12+102
+
22
22+92
+
32
32+82
+…+
92
92+22
+
102
102+12

(2)求分母為3,包含在正整數(shù)m與n(m<n)之間的所有不可約的分?jǐn)?shù)之和.

查看答案和解析>>

同步練習(xí)冊(cè)答案