某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下的對應(yīng)數(shù)據(jù):
x 2 4 5 6 8
y 30 40 50 60 70
(1)請畫出表中數(shù)據(jù)的散點圖;
(2)請根據(jù)表中提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=
b
x+
a
;
(3)要使這種產(chǎn)品的銷售額突破一億元(含一億元),則廣告費支出至少為多少百萬元?(精確到0.1).
考點:線性回歸方程
專題:計算題,概率與統(tǒng)計
分析:(1)把所給的五組數(shù)據(jù)作為五個點的坐標描到直角坐標系中,得到散點圖,
(2)根據(jù)所給的數(shù)據(jù)先做出數(shù)據(jù)的平均數(shù),即樣本中心點,根據(jù)最小二乘法做出線性回歸方程的系數(shù),寫出線性回歸方程.
(3)根據(jù)這種產(chǎn)品的銷售額突破一億元(含一億元),列出不等式,解不等式,求出對應(yīng)的x的范圍,得到廣告費支出.
解答: 解:(1)把所給的五組數(shù)據(jù)作為五個點的坐標描到直角坐標系中,得到散點圖,如圖

(2)
.
x
=
2+4+5+6+8
5
=5,
.
y
=
30+40+50+60+70
5
=50,
b
=
5
i=1
xiyi-5
.
x
.
y
5
i=1
xi2-5
.
x
2
=
1390-5•5•50
145-5•52
=7,
a
=15,
∴線性回歸方程為y=7x+15.
(3)由7x+15≥100,
∴x≥12.1百萬元,
即廣告費支出至少為12.1百萬元.
點評:本題考查線性回歸方程的求法和應(yīng)用,本題解題的關(guān)鍵是利用最小二乘法求出線性回歸方程的系數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面三個命題:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②不等式|x-3|+|x-1|≤2的解集是[1,3];
③正方體的內(nèi)切球與其外接球的表面積之比為1:3;
其中所有正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
y2
m2
-x2=1的漸近線方程為y=±
2
x,則雙曲線離心率為( 。
A、
2
B、3
C、
6
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,內(nèi)外兩個橢圓的離心率相同,從外層橢圓頂點向內(nèi)層橢圓引切線AC,BD,設(shè)內(nèi)層橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0),若直線AC與BD的斜率之積為-
1
4
,則橢圓的離心率為(  )
A、
1
2
B、
2
2
C、
3
2
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)m(m-1)+(m2-3m+2)i是純虛數(shù)(其中i為虛數(shù)單位),則m=( 。
A、0或1B、1C、0D、1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}前n項和為Sn,且滿足S3=
7
2
,S6=
63
2
,
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求log2a1+log2a2+log2a3+…+log2a25的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f﹙x﹚=loga(1+x),g﹙x﹚=loga﹙x-1﹚﹙a>0且a≠1﹚.
①求函數(shù)f﹙x﹚+g﹙x﹚的定義域;
②判斷函數(shù)f﹙x﹚+g﹙x﹚的奇偶性并說明理由;
③求使f﹙x﹚-g(2x)>0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,且對任意的n∈N*,都有a1b1+a2b2+a3b3+…+anbn=n•2n+3
(Ⅰ)若{bn}的首項為4,公比為2,求數(shù)列{an+bn}的前n項和Sn;
(Ⅱ)若an=4n+4,試探究:數(shù)列{bn}中是否存在某一項,它可以表示為該數(shù)列中其它r(r∈N,r≥2)項的和?若存在,請求出該項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3+x2-1在點M(1,1)處的切線的方程是
 

查看答案和解析>>

同步練習(xí)冊答案