已知為常數(shù),且,函數(shù),
(是自然對(duì)數(shù)的底數(shù)).
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),是否同時(shí)存在實(shí)數(shù)和(),使得對(duì)每一個(gè),直線與曲線都有公共點(diǎn)?若存在,求出最小的實(shí)數(shù)和最大的實(shí)數(shù);若不存在,說(shuō)明理由.
(1);(2)當(dāng)時(shí),的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,當(dāng)時(shí),的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(3) 當(dāng)時(shí),存在實(shí)數(shù)和,使得對(duì)每一個(gè),直線與曲線都有公共點(diǎn),可得.
解析試題分析:(1) 由可解得的值;(2)對(duì)函數(shù)求導(dǎo)可得,對(duì)進(jìn)行討論,解,分別可得單調(diào)遞增與遞減區(qū)間;(3)當(dāng)時(shí),,求出導(dǎo)數(shù)判斷在的變化情況,得在區(qū)間內(nèi)值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f3/3/pwxm91.png" style="vertical-align:middle;" />,假設(shè)存在題目中要求的點(diǎn),那么每一個(gè),直線與曲線都沒(méi)有公共點(diǎn).
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
對(duì)于三次函數(shù)。
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù),( 為常數(shù),為自然對(duì)數(shù)的底).
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù)f(x)= (a∈R).
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
設(shè)函數(shù).
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
修建一個(gè)面積為平方米的矩形場(chǎng)地的圍墻,要求在前面墻的正中間留一個(gè)寬度為2米的出入口,后面墻長(zhǎng)度不超過(guò)20米,已知后面墻的造價(jià)為每米45元,其它墻的造價(jià)為每米180元,設(shè)后面墻長(zhǎng)度為x米,修建此矩形場(chǎng)地圍墻的總費(fèi)用為元.
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
設(shè)函數(shù).
科目:高中數(shù)學(xué)
來(lái)源:
題型:解答題
已知函數(shù).
百度致信 - 練習(xí)冊(cè)列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
解: (1)由,得; 2分
(2)由(Ⅰ),.定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/26/e/1qhti3.png" style="vertical-align:middle;" />. .3分
從而, ..4分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4b/3/dinuk1.png" style="vertical-align:middle;" />,所以
當(dāng)時(shí),由得,由得;5分
當(dāng)時(shí),由得,由得;6分
因而, 當(dāng)時(shí),的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為, ..7分
當(dāng)時(shí),的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為. .8分
(3)當(dāng)時(shí),..令,則.
當(dāng)在區(qū)間內(nèi)變化時(shí),,的變化情況如下表:
年級(jí)
高中課程
年級(jí)
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
定義:(1)設(shè)是函數(shù)的導(dǎo)數(shù)的導(dǎo)數(shù),若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”;
定義:(2)設(shè)為常數(shù),若定義在上的函數(shù)對(duì)于定義域內(nèi)的一切實(shí)數(shù),都有成立,則函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱。
己知,請(qǐng)回答下列問(wèn)題:
(1)求函數(shù)的“拐點(diǎn)”的坐標(biāo)
(2)檢驗(yàn)函數(shù)的圖象是否關(guān)于“拐點(diǎn)”對(duì)稱,對(duì)于任意的三次函數(shù)寫出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論(不必證明)
(3)寫出一個(gè)三次函數(shù),使得它的“拐點(diǎn)”是(不要過(guò)程)
(1)當(dāng)時(shí),求;
(2)若在時(shí)取得極小值,試確定的取值范圍;
(3)在(2)的條件下,設(shè)由的極大值構(gòu)成的函數(shù)為,將換元為,試判斷曲線是否能與直線(為確定的常數(shù))相切,并說(shuō)明理由.
(1)求f(x)的極值;
(2)若函數(shù)f(x)的圖象與函數(shù)g(x)=1的圖象在區(qū)間(0,e2]上有公共點(diǎn),求實(shí)數(shù)a的取值范圍.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)關(guān)于的方程f(x)=a在區(qū)間上有三個(gè)根,求a的取值范圍.
(1)求的表達(dá)式;
(2)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.
(1)若在時(shí)有極值,求實(shí)數(shù)的值和的極大值;
(2)若在定義域上是增函數(shù),求實(shí)數(shù)的取值范圍.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若存在, 使得成立,求實(shí)數(shù)的取值范圍.
版權(quán)聲明:本站所有文章,圖片來(lái)源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無(wú)意侵犯版權(quán),如有侵權(quán),請(qǐng)作者速來(lái)函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)