【題目】已知函數(shù), 其中為常數(shù).

(1)當(dāng),時(shí),求函數(shù)的單調(diào)區(qū)間及極值

(2)已知, ,若函數(shù)有2個(gè)零點(diǎn) 有6個(gè)零點(diǎn),試確定的值.

【答案】1見解析.2.

【解析】試題分析:(1)求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間,根據(jù)函數(shù)的單調(diào)性可得的極值;(2)若函數(shù)存在2個(gè)零點(diǎn),則方程有2個(gè)不同的實(shí)根,設(shè),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,結(jié)合函數(shù)圖象可得,而有6個(gè)零點(diǎn),故方程都有三個(gè)不同的解,可得,結(jié)合可得結(jié)果.

試題解析:1因?yàn)?/span>,所以(舍).

當(dāng)時(shí), ,函數(shù)單調(diào)遞減; 時(shí), ,函數(shù)單調(diào)遞增.

因此的極小值為,無極大值.

2若函數(shù)存在2個(gè)零點(diǎn),則方程有2個(gè)不同的實(shí)根設(shè),

.令,

,,, 所以在區(qū)間, 內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增,且當(dāng)時(shí),可得,所以, ; , ,因此函數(shù)的草圖如圖所示,

所以的極小值為.

的圖象可知.

因?yàn)?/span>,所以令,即

有6個(gè)零點(diǎn),故方程都有三個(gè)不同的解所以,,所以.

又因?yàn)?/span>, ,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體的棱長為2,分別為的中點(diǎn),則(

A.直線與直線垂直B.直線與平面平行

C.平面截正方體所得的截面面積為D.點(diǎn)與點(diǎn)到平面的距離相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,其中為實(shí)常數(shù).

1)若函數(shù)在區(qū)間[2,3]上為單調(diào)遞增函數(shù),求的取值范圍;

2)高函數(shù)在區(qū)間上的最小值為,試討論函數(shù),的零點(diǎn)的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買1臺機(jī)器,該種機(jī)器使用三年后即被淘汰.在購進(jìn)機(jī)器時(shí),可以一次性額外購買幾次維修服務(wù),每次維修服務(wù)費(fèi)用200元,另外實(shí)際維修一次還需向維修人員支付小費(fèi),小費(fèi)每次50元.在機(jī)器使用期間,如果維修次數(shù)超過購機(jī)時(shí)購買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費(fèi)用500元,無需支付小費(fèi).現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)一次性購買幾次維修服務(wù),為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計(jì)表:

維修次數(shù)

8

9

10

11

12

頻數(shù)

10

20

30

30

10

x表示1臺機(jī)器在三年使用期內(nèi)的維修次數(shù),y表示1臺機(jī)器在維修上所需的費(fèi)用(單位:元),表示購機(jī)的同時(shí)購買的維修服務(wù)次數(shù).

(1)若=10,求yx的函數(shù)解析式;

(2)若要求“維修次數(shù)不大于的頻率不小于0.8,求n的最小值;

(3)假設(shè)這100臺機(jī)器在購機(jī)的同時(shí)每臺都購買10次維修服務(wù),或每臺都購買11次維修服務(wù),分別計(jì)算這100臺機(jī)器在維修上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買1臺機(jī)器的同時(shí)應(yīng)購買10次還是11次維修服務(wù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】207年8月8日晚我國四川九賽溝縣發(fā)生了7.0級地震為了解與掌握一些基本的地震安全防護(hù)知識,某小學(xué)在9月份開學(xué)初對全校學(xué)生進(jìn)行了為期一周的知識講座,事后并進(jìn)行了測試(滿分100分),根據(jù)測試成績評定為“合格”(60分以上包含60分)、“不合格”兩個(gè)等級,同時(shí)對相應(yīng)等級進(jìn)行量化:“合格”定為10分,“不合格”定為5分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對應(yīng)的頻率分布直方圖如圖所示:

等級

不合格

合格

得分

頻數(shù)

6

24

(1)求的值;

(2)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中抽取10人進(jìn)行座談,現(xiàn)再從這10人中任選4人記所選4人的量化總分為,的分布列及數(shù)學(xué)期望

(3)設(shè)函數(shù)(其中表示的方差)是評估安全教育方案成效的一種模擬函數(shù).當(dāng)時(shí),認(rèn)定教育方案是有效的;否則認(rèn)定教育方案應(yīng)需調(diào)整,試以此函數(shù)為參考依據(jù).在(2)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點(diǎn)為平面內(nèi)一動點(diǎn),以線段為直徑的圓內(nèi)切于圓,設(shè)動點(diǎn)的軌跡為曲線.

(Ⅰ)求曲線的方程;

(Ⅱ) 是曲線上的動點(diǎn),且直線經(jīng)過定點(diǎn),問在軸上是否存在定點(diǎn),使得,若存在,請求出定點(diǎn),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)需要設(shè)計(jì)一個(gè)倉庫,它由上下兩部分組成,上部分的形狀是正四棱錐,下部分的形狀是正四棱柱如圖所示,并要求正四棱柱的高是正四棱錐的高的4倍.

1則倉庫的容積是多少?

2若正四棱錐的側(cè)棱長為,則當(dāng)為多少時(shí),倉庫的容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)已知,直線與曲線交于, 兩點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

⑴若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

⑵若為自然對數(shù)的底數(shù)),證明:當(dāng)時(shí),

查看答案和解析>>

同步練習(xí)冊答案