【題目】設(shè)點(a,b)是區(qū)域 內(nèi)的任意一點,則使函數(shù)f(x)=ax2﹣2bx+3在區(qū)間[ ,+∞)上是增函數(shù)的概率為( )
A.
B.
C.
D.
【答案】A
【解析】解:作出不等式組對應(yīng)的平面區(qū)域如圖
若f(x)=ax2﹣2bx+3在區(qū)間[ ,+∞)上是增函數(shù),
則 ,即 ,
則A(0,4),B(4,0),由 得 ,
即C( , ),
則△OBC的面積S= = .
△OAB的面積S= 4=8.
則使函數(shù)f(x)=ax2﹣2bx+3在區(qū)間[ ,+∞)上是增函數(shù)的概率P= = ,
所以答案是:A.
【考點精析】解答此題的關(guān)鍵在于理解幾何概型的相關(guān)知識,掌握幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣ax,g(x)= x2﹣lnx﹣ .
(1)若f(x)和g(x)在同一點處有相同的極值,求實數(shù)a的值;
(2)對于一切x∈(0,+∞),有不等式f(x)≥2xg(x)﹣x2+5x﹣3恒成立,求實數(shù)a的取值范圍;
(3)設(shè)G(x)= x2﹣ ﹣g(x),求證:G(x)> ﹣ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:(x﹣1)2+(y﹣3)2=2被y軸截得的線段AB與被直線y=3x+b所截得的線段CD的長度相等,則b等于( )
A.±
B.±
C.±2
D.±
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個總體中有600個個體,隨機編號為001,002,…,600,利用系統(tǒng)抽樣方法抽取容量為24的一個樣本,總體分組后在第一組隨機抽得的編號為006,則在編號為051~125之間抽得的編號為( )
A.056,080,104
B.054,078,102
C.054,079,104
D.056,081,106
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的首項a1=2,前n項和為Sn , 等比數(shù)列{bn}的首項b1=1,且a2=b3 , S3=6b2 , n∈N* .
(1)求數(shù)列{an}和{bn}的通項公式;
(2)數(shù)列{cn}滿足cn=bn+(﹣1)nan , 記數(shù)列{cn}的前n項和為Tn , 求Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x﹣ .
(I)求函數(shù)f(x)的值域;
(II)已知銳角△ABC的兩邊長分別是函數(shù)f(x)的最大值和最小值,且△ABC的外接圓半徑為 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,已知圓圓心為,過點且斜率為的直線與圓相交于不同的兩點、.
()求的取值范圍;
()是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知x=﹣3,x=1是函數(shù)f(x)=sin(ωx+φ)(ω>0)的兩個相鄰的極值點,且f(x)在x=﹣1處的導(dǎo)數(shù)f'(﹣1)>0,則f(0)=( )
A.0
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若x1 , x2 , …,x2017的平均數(shù)為4,標準差為3,且yi=﹣3(xi﹣2),i=x1 , x2 , …,x2017 , 則新數(shù)據(jù)y1 , y2 , …,y2017的平均數(shù)和標準差分別為( )
A.﹣6 9
B.﹣6 27
C.﹣12 9
D.﹣12 27
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com