【題目】(本題滿分12)將一個半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣?/span>.小球在下落過程中,3次遇到黑色障礙物,最后落入袋或袋中.已知小球每次遇到黑色障礙物時向左、右兩邊下落的概率都是.

)求小球落入袋中的概率;

)在容器入口處依次放入4個小球,為落入袋中小球的個數(shù),試求的概率和的數(shù)學(xué)期望.

【答案】;

【解析】

)解法一:記小球落入袋中的概率,則,

由于小球每次遇到黑色障礙物時一直向左或者一直向右下落,小球?qū)⒙淙?/span>袋,所以

解法二:由于小球每次遇到黑色障礙物時,有一次向左和兩次向右或兩次向左和一次向右下落時小球?qū)⒙淙?/span>.

……………………………………….4

)由題意,所以有

,……………………………………………8

………………………………………………………………..10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )

A. 45B. 15C. 10D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地擬規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設(shè)計成半徑為1km的扇形,中心角).為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴(kuò)建成正方形,其中點(diǎn)分別在邊上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬元、20萬元、20萬元.

(1)要使觀賞區(qū)的年收入不低于5萬元,求的最大值;

(2)試問:當(dāng)為多少時,年總收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的底面是等邊三角形,點(diǎn)在平面上的射影在內(nèi)(不包括邊界),.,與底面所成角為;二面角,的平面角為,,則,,,之間的大小關(guān)系等確定的是()

A. B.

C. 是最小角,是最大角D. 只能確定,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的六面體中,面是邊長為2的正方形,面是直角梯形,,.

(1)求證:平面;

(2)若二面角為60°,求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),事件A:“兩數(shù)之和為8”,事件B:“兩數(shù)之和是3的倍數(shù)”,事件C:“兩個數(shù)均為偶數(shù)”.

(I)寫出該試驗的基本事件,并求事件A發(fā)生的概率;

(II)求事件B發(fā)生的概率;

(III)事件A與事件C至少有一個發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南北朝時期的數(shù)學(xué)家祖暅提出了計算幾何體體積的祖暅原理:冪勢既同,則積不容異.意思是兩個同高的幾何體,如果在等高處的截面積都相等,那么這兩個幾何體的體積相等.現(xiàn)有某幾何體和一個圓錐滿足祖暅原理的條件,若該圓錐的側(cè)面展開圖是半徑為3的圓的三分之一,則該幾何體的體積為(

A.πB.πC.4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點(diǎn), 求實數(shù)的取值范圍;

(Ⅱ) 證明: 當(dāng)時, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機(jī)變量X服從正態(tài)分布Nμ,σ2),且PμXμ)=0.954 4PμσXμσ)=0.682 6.μ4,σ1,則P5X6)=( )

A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6;

查看答案和解析>>

同步練習(xí)冊答案