【題目】我國南北朝時期的數(shù)學家祖暅提出了計算幾何體體積的祖暅原理:冪勢既同,則積不容異.意思是兩個同高的幾何體,如果在等高處的截面積都相等,那么這兩個幾何體的體積相等.現(xiàn)有某幾何體和一個圓錐滿足祖暅原理的條件,若該圓錐的側(cè)面展開圖是半徑為3的圓的三分之一,則該幾何體的體積為(

A.πB.πC.4D.

【答案】A

【解析】

由題意可得該幾何體的體積與圓錐相同,結(jié)合圓錐側(cè)面展開圖的特征可求得圓錐的母線與底面半徑的長度,進而可得圓錐的高,代入圓錐體積公式即可得解.

由題意可知,該幾何體的體積等于圓錐的體積,

∵圓錐的側(cè)面展開圖恰為一個半徑為3的圓的三分之一,

∴圓錐的底面周長為,

圓錐的底面半徑為1,母線長為3,

圓錐的高為,

∴圓錐的體積圓錐

從而所求幾何體的體積為

故選:A

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),曲線在點處的切線方程為

(1)求,的值;

(2)若,求函數(shù)的單調(diào)區(qū)間;

(3)設(shè)函數(shù),且在區(qū)間內(nèi)存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,且離心率為

(Ⅰ)求橢圓的方程

(Ⅱ)設(shè)是橢圓上的點,直線為坐標原點)的斜率之積為.若動點滿足,試探究是否存在兩個定點,使得為定值?若存在,的坐標;若不存在請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分12)將一個半徑適當?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣?/span>.小球在下落過程中,3次遇到黑色障礙物,最后落入袋或袋中.已知小球每次遇到黑色障礙物時向左、右兩邊下落的概率都是.

)求小球落入袋中的概率;

)在容器入口處依次放入4個小球,為落入袋中小球的個數(shù),試求的概率和的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知:在函數(shù)的圖象上,以為切點的切線的傾斜角為

,的值;

是否存在最小的正整數(shù),使得不等式對于恒成立?如果存在,請求出最小的正整數(shù);如果不存在,請說明理由;

求證:,).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中華民族具有五千多年連綿不斷的文明歷史,創(chuàng)造了博大精深的中華文化,為人類文明進步作出了不可磨滅的貢獻.為弘揚傳統(tǒng)文化,某校組織了國學知識大賽,該校最終有四名選手、參加了總決賽,總決賽設(shè)置了一、二、三等獎各一個,無并列.比賽結(jié)束后,說:“你沒有獲得一等獎”,說:“你獲得了二等獎”;對大家說:“我未獲得三等獎”,、說:“你媽三人中有一人未獲獎”,四位選手中僅有一人撒謊,則選手獲獎情形共計__________種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若存在區(qū)間,使得,則稱函數(shù)可等域函數(shù),區(qū)間A為函數(shù)的一個可等域區(qū)間”.給出下列四個函數(shù):①;②;③;④.其中存在唯一可等域區(qū)間可等域函數(shù)的個數(shù)是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形是菱形,,上任意一點。

(1)求證:;

(2)當面積的最小值是9時,在線段上是否存在點,使與平面所成角的正切值為2?若存在?求出的值,若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)個不全相等的正數(shù),,…,依次圍成一個圓圈.

(Ⅰ)設(shè),且,,…,是公差為的等差數(shù)列,而,,,…,是公比為的等比數(shù)列,數(shù)列,,…,的前項和滿足,,求數(shù)列的通項公式;

(Ⅱ)設(shè),,若數(shù)列,,…,每項是其左右相鄰兩數(shù)平方的等比中項,求;

(Ⅲ)在(Ⅱ)的條件下,,求符合條件的的個數(shù).

查看答案和解析>>

同步練習冊答案