【題目】函數(shù)f(x)=xlnx-a(x-1)2-x,g(x)=lnx-2a(x-1),其中常數(shù)a∈R.
(Ⅰ)討論g(x)的單調(diào)性;
(Ⅱ)當(dāng)a>0時(shí),若f(x)有兩個(gè)零點(diǎn)x1 , x2(x1<x2),求證:在區(qū)間(1,+∞)上存在f(x)的極值點(diǎn)x0 , 使得x0lnx0+lnx0-2x0>0.
【答案】解:(Ⅰ)解:函數(shù)g(x)的定義域?yàn)椋?,+∞),導(dǎo)函數(shù)為 .
①當(dāng)a≤0時(shí),g′(x)>0恒成立,g(x)在定義域(0,+∞)上是增函數(shù);
②當(dāng)a>0時(shí), ,并且,
在區(qū)間(0, )上,g′(x)>0,∴g(x)在(0, )是增函數(shù);
在區(qū)間( ,+∞)上,g′(x)<0,∴g(x)在區(qū)間( ,+∞)上是減函數(shù).
(Ⅱ)證明:當(dāng)a>0時(shí),在區(qū)間(0,1]上,f(x)<0是顯然的,即在此區(qū)間上f(x)沒有零點(diǎn);又由于f(x)有兩個(gè)零點(diǎn),則必然f(x)在區(qū)間(1,+∞)上有兩個(gè)零點(diǎn)x1,x2(x1<x2),
f′(x)=lnx-2a(x-1),由(Ⅰ)知,f′(x)在區(qū)間(0, )上是增函數(shù),在區(qū)間( ,+∞)上是減函數(shù).
①若 ,則 ,在區(qū)間(1,+∞)上,f′(x)是減函數(shù),f′(x)≤f′(1)=0,f(x)在(1,+∞)上單調(diào)遞減,不可能有兩個(gè)零點(diǎn),所以必然有 .
②當(dāng) 時(shí),在區(qū)間(1, )上,f′(x)是增函數(shù),f′(x)>f′(1)=0;
在區(qū)間( ,+∞)上,f′(x)是減函數(shù).依題意,必存在實(shí)數(shù)x0,使得在區(qū)間( ,x0)上,f′(x)>0,f(x)是增函數(shù);在區(qū)間(x0,+∞)上,f′(x)<0,f(x)是減函數(shù).此時(shí)x0>1,且x0是f(x)的極大值點(diǎn).
所以f(x0)>0,且f′(x0)=0,即 消去a得到x0lnx0+lnx0-2x0>0(x0>1).
設(shè)F(x)=xlnx+lnx-2x(x>1), .
∵ ,∴x>1時(shí),F(xiàn)′(x)單調(diào)遞增.又F′(1)=0,
∴x>1時(shí),F(xiàn)′(x)>0.∴x>1時(shí),F(xiàn)(x)單調(diào)遞增.
又F(1)=-2<0,F(xiàn)(e2)=2>0.∴存在x0=e2>1滿足題意.
亦可直接觀察得到,x0=e2時(shí),e2lne2+lne2-2e2=2>0,滿足題意.
【解析】(Ⅰ)先求得函數(shù)g(x)的導(dǎo)函數(shù),對a進(jìn)行分類討論并分別判斷函數(shù)g′(x)值大于零與小于零的區(qū)間,從而得到函數(shù)g(x)的單調(diào)區(qū)間;(Ⅱ)先函數(shù)f(x)零點(diǎn)存在的區(qū)間,再利用零點(diǎn)的存在區(qū)間確定a的取值范圍,再結(jié)合零點(diǎn)的存在性得到滿足題意的x0,對設(shè)出的F(x)求得最大值為0的情況,從而求出x0的具體值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的判斷方法的相關(guān)知識,掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較,以及對函數(shù)的極值與導(dǎo)數(shù)的理解,了解求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在2017年初的時(shí)候,國家政府工作報(bào)告明確提出,2017年要堅(jiān)決打好藍(lán)天保衛(wèi)戰(zhàn),加快解決燃煤污染問題,全面實(shí)施散煤綜合治理.實(shí)施煤改電工程后,某縣城的近六個(gè)月的月用煤量逐漸減少,6月至11月的用煤量如下表所示:
(1)由于某些原因, 中一個(gè)數(shù)據(jù)丟失,但根據(jù)6至9月份的數(shù)據(jù)得出少樣本平均值是3.5,求出丟失的數(shù)據(jù);
(2)請根據(jù)6至9月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)現(xiàn)在用(2)中得到的線性回歸方程中得到的估計(jì)數(shù)據(jù)與10月11月的實(shí)際數(shù)據(jù)的誤差來判斷該地區(qū)的改造項(xiàng)目是否達(dá)到預(yù)期,若誤差均不超過0.3,則認(rèn)為該地區(qū)的改造已經(jīng)達(dá)到預(yù)期,否則認(rèn)為改造未達(dá)預(yù)期,請判斷該地區(qū)的煤改電項(xiàng)目是否達(dá)預(yù)期?(參考公式:線性回歸方程,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲一等獎;若只有1個(gè)紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機(jī)會,記該顧客在3次抽獎中獲一等獎的次數(shù)為x,求x的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F(xiàn)分別為AC,BC的中點(diǎn),沿EF將△CEF折起,得到如圖2所示的四棱錐C′﹣ABFE
(1)求證:AB⊥平面AEC′;
(2)當(dāng)四棱錐C′﹣ABFE體積取最大值時(shí),
①若G為BC′中點(diǎn),求異面直線GF與AC′所成角;
②在C′﹣ABFE中AE交BF于C,求二面角A﹣CC′﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|-|x-1|.
(Ⅰ)當(dāng)a=-2時(shí),求不等式 的解集;
(Ⅱ)若f(x)≥2有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2 sin( ωx)cos( ωx)+2cos2( ωx)(ω>0),且函數(shù)f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著社會的發(fā)展,食品安全問題漸漸成為社會關(guān)注的熱點(diǎn),為了提高學(xué)生的食品安全意識,某學(xué)校組織全校學(xué)生參加食品安全知識競賽,成績的頻率分布直方圖如圖所示,數(shù)據(jù)的分組依次為[20,40),[40,60),[60,80),[80,100),若該校的學(xué)生總?cè)藬?shù)為3000,則成績不超過60分的學(xué)生人數(shù)大約為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知△ABC三個(gè)頂點(diǎn)坐標(biāo)為A(7,8),B(10,4),C(2,-4).
(1)求BC邊上的中線所在直線的方程;
(2)求BC邊上的高所在直線的方程.
【答案】(1);(2)
【解析】試題分析:(1)根據(jù)中點(diǎn)坐標(biāo)公式求出中點(diǎn)的坐標(biāo),根據(jù)斜率公式可求得的斜率,利用點(diǎn)斜式可求邊上的中線所在直線的方程;(2)先根據(jù)斜率公式求出的斜率,從而求出邊上的高所在直線的斜率為,利用點(diǎn)斜式可求邊上的高所在直線的方程.
試題解析:(1)由B(10,4),C(2,-4),得BC中點(diǎn)D的坐標(biāo)為(6,0),
所以AD的斜率為k==8,
所以BC邊上的中線AD所在直線的方程為y-0=8(x-6),
即8x-y-48=0.
(2)由B(10,4),C(2,-4),得BC所在直線的斜率為k==1,
所以BC邊上的高所在直線的斜率為-1,
所以BC邊上的高所在直線的方程為y-8=-(x-7),即x+y-15=0.
【題型】解答題
【結(jié)束】
17
【題目】已知直線l:x-2y+2m-2=0.
(1)求過點(diǎn)(2,3)且與直線l垂直的直線的方程;
(2)若直線l與兩坐標(biāo)軸所圍成的三角形的面積大于4,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com