【題目】如圖,直四棱柱底面直角梯形,∥,,是棱上一點(diǎn),,,,,.
(1)求異面直線(xiàn)與所成的角;
(2)求證:平面.
【答案】(1) ;(2)證明見(jiàn)解析.
【解析】
試題分析:(1)本題中由于有兩兩垂直,因此在求異面直線(xiàn)所成角時(shí),可以通過(guò)建立空間直角坐標(biāo)系,利用向量的夾角求出所求角;(2)同(1)我們可以用向量法證明線(xiàn)線(xiàn)垂直,以證明線(xiàn)面垂直,,,,易得當(dāng)然我們也可直線(xiàn)用幾何法證明線(xiàn)面垂直,首先,這由已知可直接得到,而證明可在直角梯形通過(guò)計(jì)算利用勾股定理證明,,,因此,得證.
(1)以原點(diǎn),、、分別為軸、軸、軸建立空間直角坐標(biāo)系.則,,,. 3分
于是,,,
異面直線(xiàn)與所成的角的大小等于. 6分
(2)過(guò)作交于,在中,,,則,,,
, 10分
,.又,平面. 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的離心率為,右準(zhǔn)線(xiàn)方程為,、分別是橢圓的左、右頂點(diǎn),過(guò)右焦點(diǎn)且斜率為的直線(xiàn)與橢圓相交于,兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)記、的面積分別為、,若,求的值;
(3)設(shè)線(xiàn)段的中點(diǎn)為,直線(xiàn)與右準(zhǔn)線(xiàn)相交于點(diǎn),記直線(xiàn)、、的斜率分別為、、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,M是橢圓C的上頂點(diǎn),,F(xiàn)2是橢圓C的焦點(diǎn),的周長(zhǎng)是6.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)動(dòng)點(diǎn)P(1,t)作直線(xiàn)交橢圓C于A,B兩點(diǎn),且|PA|=|PB|,過(guò)P作直線(xiàn)l,使l與直線(xiàn)AB垂直,證明:直線(xiàn)l恒過(guò)定點(diǎn),并求此定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分12分)如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.
(Ⅰ)證明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線(xiàn)A1C 與平面BB1C1C所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)面底面,四邊形為菱形,是邊長(zhǎng)為2的等邊三角形,,點(diǎn)為的中點(diǎn).
(1)若平面與平面交于直線(xiàn),求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(多選題)下列說(shuō)法中,正確的命題是( )
A.已知隨機(jī)變量服從正態(tài)分布,,則.
B.以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線(xiàn)性方程,則,的值分別是和0.3.
C.已知兩個(gè)變量具有線(xiàn)性相關(guān)關(guān)系,其回歸直線(xiàn)方程為,若,,,則.
D.若樣本數(shù)據(jù),,…,的方差為2,則數(shù)據(jù),,…,的方差為16.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)二階矩陣A=.
(1) 求A-1;
(2) 若曲線(xiàn)C在矩陣A對(duì)應(yīng)的變換作用下得到曲線(xiàn)C′:6x2-y2=1,求曲線(xiàn)C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市一所高中為備戰(zhàn)即將舉行的全市羽毛球比賽,學(xué)校決定組織甲、乙兩隊(duì)進(jìn)行羽毛球?qū)官悓?shí)戰(zhàn)訓(xùn)練.每隊(duì)四名運(yùn)動(dòng)員,并統(tǒng)計(jì)了以往多次比賽成績(jī),按由高到低進(jìn)行排序分別為第一名、第二名、第三名、第四名.比賽規(guī)則為甲、乙兩隊(duì)同名次的運(yùn)動(dòng)員進(jìn)行對(duì)抗,每場(chǎng)對(duì)抗賽都互不影響,當(dāng)甲、乙兩隊(duì)的四名隊(duì)員都進(jìn)行一次對(duì)抗賽后稱(chēng)為一個(gè)輪次.按以往多次比賽統(tǒng)計(jì)的結(jié)果,甲、乙兩隊(duì)同名次進(jìn)行對(duì)抗時(shí),甲隊(duì)隊(duì)員獲勝的概率分別為,,,.
(1)進(jìn)行一個(gè)輪次對(duì)抗賽后一共有多少種對(duì)抗結(jié)果?
(2)計(jì)分規(guī)則為每次對(duì)抗賽獲勝一方所在的隊(duì)得1分,失敗一方所在的隊(duì)得0分,設(shè)進(jìn)行一個(gè)輪次對(duì)抗賽后甲隊(duì)所得分?jǐn)?shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,.
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)令,且函數(shù)有三個(gè)彼此不相等的零點(diǎn),其中.
①若,求函數(shù)在處的切線(xiàn)方程;
②若對(duì),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com