【題目】已知函數(shù),其中為大于零的常數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值;
(3)求證:對于任意的時,都有成立.
【答案】(1)的增區(qū)間為,減區(qū)間為;
(2)①當(dāng)時,,②當(dāng)時,,③當(dāng)時,;
(3)證明見解析.
【解析】
試題分析:(1)先確定函數(shù)的定義域然后求導(dǎo)數(shù),在函數(shù)的定義域內(nèi)解不等式和;(2)研究閉區(qū)間上的最值問題,先求出函數(shù)的極值,比較極值和端點(diǎn)處的函數(shù)值的大小,最后確定出最小值;(3)由(1)知函數(shù)在上為增函數(shù),構(gòu)造與的遞推關(guān)系,可利用疊加法求出所需結(jié)論.
試題解析:(1)當(dāng)時,,由;由,
∴的增區(qū)間為,減區(qū)間為.
(2)由,
當(dāng)時,在上恒成立,這是上為增函數(shù),;
當(dāng)在上恒成立,遞減,,
當(dāng)時,令,得,由;
所以在上遞減,在上遞增,有,
綜上,在上的最小值為:①當(dāng)時,;
②當(dāng)時,;③當(dāng)時,;
(3)由(1)知函數(shù)在為遞增函數(shù),
所以當(dāng)時,有對恒成立,
所以
,所以,對時,都有成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、滿足: .
(1)求;
(2)設(shè),求數(shù)列的通項(xiàng)公式;
(3)設(shè),不等式恒成立時,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為(為參數(shù)).
(1)直線過且與曲線相切,求直線的極坐標(biāo)方程;
(2)點(diǎn)與點(diǎn)關(guān)于軸對稱,求曲線 上的點(diǎn)到點(diǎn)的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面是矩形,,,,且.
(1)求證:平面平面;
(2)設(shè)是的中點(diǎn),判斷并證明在線段上是否存在點(diǎn),使平面,若存在,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子中,放有標(biāo)號分別為,,,的四個大小相同的小球,現(xiàn)從這個盒子中,有放回地先后取得兩個小球,其標(biāo)號分別為,.
(1)求事件的概率;
(2)求事件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的兩條對角線相交于點(diǎn), 邊所在直線的方程為,點(diǎn)在邊所在的直線上.
(Ⅰ)求邊所在直線的方程;
(Ⅱ)求矩形外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌茶壺的原售價(jià)為80元一個,今有甲、乙兩家茶具店銷售這種茶壺,甲店用如下的方法促銷:如果只購買一只茶壺,其價(jià)格為78元/個;如果一次購買兩個茶壺,其價(jià)格為76元/個;…;如果一次購買的茶壺?cái)?shù)每增加一個,那么茶壺的價(jià)格減少2元/個,但茶壺的售價(jià)不得低于44元/個。乙店一律按原價(jià)的75%銷售,F(xiàn)某茶社要購買這種茶壺個,如果全部在甲店購買,則所需金額為元;如果全部在乙店購買,則所需金額為元。
(1)分別求出、與之間的函數(shù)關(guān)系式。
(2)該茶社去哪家茶具店購買茶壺花費(fèi)較少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位有、、三個工作點(diǎn),需要建立一個公共無線網(wǎng)絡(luò)發(fā)射點(diǎn),使得發(fā)射點(diǎn)到三個工作點(diǎn)的距離相等.已知這三個工作點(diǎn)之間的距離分別為,,.假定、、、四點(diǎn)在同一平面內(nèi).
(Ⅰ)求的大小;
(Ⅱ)求點(diǎn)到直線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班倡議假期每位學(xué)生至少閱讀一本名著,為了解學(xué)生的閱讀情況,對該班所有學(xué)生進(jìn)行了調(diào)查.調(diào)查結(jié)果如下表:
閱讀名著的本數(shù) | 1 | 2 | 3 | 4 | 5 |
男生人數(shù) | 3 | 1 | 2 | 1 | 3 |
女生人數(shù) | 1 | 3 | 3 | 1 | 2 |
(1)試根據(jù)上述數(shù)據(jù),求這個班級女生閱讀名著的平均本數(shù);
(2)若從閱讀本名著的學(xué)生中任選人交流讀書心得,求選到男生和女生各人的概率;
(3)試比較該班男生閱讀名著本數(shù)的方差與女生閱讀名著本數(shù)的方差的大小(只需寫出結(jié)論).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com