已知橢圓C1的右頂點(diǎn)為P(1,0),過(guò)C1的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為1.

(I)求橢圓C1的方程;

(II)設(shè)拋物線C2:y=x2+h(h∈R)的焦點(diǎn)為F,過(guò)F點(diǎn)的直線l交拋物線與A、B兩點(diǎn),過(guò)A、B兩點(diǎn)分別作拋物線C2的切線交于Q點(diǎn),且Q點(diǎn)在橢圓C1上,求△ABQ面積的最值,并求出取得最值時(shí)的拋物線C2的方程.

答案:
解析:

  解析:(I)由題意得所求的橢圓方程為 6分

  (II)令則拋物線在點(diǎn)A處的切線斜率為

  所以切線AQ方程為:

  同理可得BQ方程為:

聯(lián)立解得Q點(diǎn)為 8分

  焦點(diǎn)F坐標(biāo)為(0,),令l方程為:代入

  得: 由韋達(dá)定理有:

  所以Q點(diǎn)為 10分

  過(guò)Q做y軸平行線交AB于M點(diǎn),則

  M點(diǎn)為, ,

   12分

  而Q點(diǎn)在橢圓上,

  

   15分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2009年高考數(shù)學(xué)理科(浙江卷) 題型:044

已知橢圓C1的右頂點(diǎn)為A(1,0),過(guò)C1的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為1

()求橢圓C1的方程;

()設(shè)點(diǎn)P在拋物線C2yx2h(hR)上,C2在點(diǎn)P處的切線與C1交于點(diǎn)M,N.當(dāng)線段AP的中點(diǎn)與MN的中點(diǎn)的橫坐標(biāo)相等時(shí),求h的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省黃岡市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知橢圓C1的離心率為,直線l: y-=x+2與.以原點(diǎn)為圓心、橢圓C1的短半軸長(zhǎng)為半徑的圓O相切.

(1)求橢圓C1的方程;

(ll)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l2過(guò)點(diǎn)F價(jià)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線l2垂直于l1,垂足為點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;

(III)過(guò)橢圓C1的左頂點(diǎn)A作直線m,與圓O相交于兩點(diǎn)R,S,若△ORS是鈍角三角形,     求直線m的斜率k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:陜西省模擬題 題型:解答題

已知橢圓C1的離心率為,直線l:y=x+2與以原點(diǎn)為圓心、橢圓C1的短半軸長(zhǎng)為半徑的圓O相切。    
(Ⅰ)求橢圓C1的方程;  
(Ⅱ)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l1過(guò)點(diǎn)F1,且垂直于橢圓的長(zhǎng)軸,動(dòng)直線l2垂直于l1,垂足為點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;   
 (Ⅲ)過(guò)橢圓C1的左頂點(diǎn)A做直線m,與圓O相交于兩點(diǎn)R、S,若△ORS是鈍角三角形,求直線m的斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省南通市如皋中學(xué)高二(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C1的離心率為,一個(gè)焦點(diǎn)坐標(biāo)為
(1)求橢圓C1的方程;
(2)點(diǎn)N是橢圓的左頂點(diǎn),點(diǎn)P是橢圓C1上不同于點(diǎn)N的任意一點(diǎn),連接
NP并延長(zhǎng)交橢圓右準(zhǔn)線與點(diǎn)T,求的取值范圍;
(3)設(shè)曲線與y軸的交點(diǎn)為M,過(guò)M作兩條互相垂直的直線與曲線C2、橢圓C1相交于點(diǎn)A、D和B、E,(如圖),記△MAB、
△MDE的面積分別是S1,S2,當(dāng)時(shí),求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案