已知A,B,C,D,E為拋物線y=
1
4
x2上不同的五點(diǎn),拋物線焦點(diǎn)為F,滿足
FA
+
FB
+
FC
+
FD
+
FE
=0,則|
FA
|+|
FB
|+|
FC
|+|
FD
|+|
FE
|=(  )
A、5
B、10
C、
5
16
D、
85
16
考點(diǎn):拋物線的應(yīng)用
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:由題意可得,焦點(diǎn)F(0,1),準(zhǔn)線為y=-1,由
FA
+
FB
+
FC
+
FD
+
FE
=
0
,可得y1+y2+y3+y4+y5=5,根據(jù)拋物線的定義,可得結(jié)論.
解答: 解:拋物線y=
1
4
x2的準(zhǔn)線方程為y=-1,焦點(diǎn)坐標(biāo)為(0,1).
設(shè)A,B,C,D,E的縱坐標(biāo)分別為y1,y2,y3,y4,y5,則
FA
+
FB
+
FC
+
FD
+
FE
=
0

∴y1-1+y2-1+y3-1+y4-1+y5-1=0,
∴y1+y2+y3+y4+y5=5,
根據(jù)拋物線的定義,可得|
FA
|+|
FB
|+|
FC
|+|
FD
|+|
FE
|=y1+1+y2+1+y3+1+y4+1+y5+1=10,
故選B.
點(diǎn)評:本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,得到y(tǒng)1+y2+y3+y4+y5=5是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對?x∈R,函數(shù)f(x)=x2+bx+c的值恒非負(fù),若b>3,則
1+b+c
b-3
的最小值為(  )
A、3B、4C、5D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,且ab>0,則下列不等式中不正確的是(  )
A、
b
a
+
a
b
≥2
B、2
ab
≤|a+b|
C、|a+b|≥|a-b|
D、|a+b|<|a|+|b|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比為正數(shù),且a2a2n+2=2(an+1)2(n∈N*),a2=2,則a1=( 。
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),若在右支上存在點(diǎn)A,使得點(diǎn)F2到直線AF1的距離為2a,則該雙曲線的離心率的取值范圍是(  )
A、(1,
2
B、(1,
2
]
C、(
2
,+∞)
D、[
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一容量為100的樣本的重量的頻率分布直方圖,樣本重量均在[5,20]內(nèi),其分組為[5,10),[10,15),[15,20],則樣本重量落在[15,20]內(nèi)的頻數(shù)為( 。
A、10B、20C、30D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差為2的等差數(shù)列{an},若a4是a3與a7的等比中項(xiàng),則a1=( 。
A、2B、3C、-2D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x2+2(p+1)x+9p-5=0的兩根皆為負(fù)數(shù),求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若對一切實(shí)數(shù)x,不等式|x-3|-|x+2|>a恒成立,求實(shí)數(shù)a的取值范圍;
(2)若不等式|x-3|-|x+2|>a有解,求實(shí)數(shù)a的取值范圍;
(3)若方程|x-3|-|x+2|=a有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案