數(shù)列{an}滿足數(shù)學(xué)公式,并且an(an-1+an+1)=2an+1an-1(n≥2),則a2012=


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:利用遞推關(guān)系式推出﹛﹜為等差數(shù)列,然后求出結(jié)果.
解答:∵an(an-1+an+1)=2an+1an-1(n≥2),
∴anan-1+an+1an=2an+1an-1,兩邊同除an+1an-1
+=2,
兩邊同時除以an,得到=+,
所以﹛}為等差數(shù)列,
a1=1,a2=,故an=
所以a2012==
故選C.
點評:本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,判斷數(shù)列是等差數(shù)列是解題的關(guān)鍵,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足:Sn=
an24
+n
,an>0.
(1)求{an}的表達式;
(2)將數(shù)列{an}依次按1項,2項,3項循環(huán)地分為(a1),(a2,a3),(a4,a5,a6),(a7),(a8,a9),(a10,a11,a12),
…,分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為{bn},求b2010的值;
(3)如果將數(shù)列{an}依次按1項,2項,3項,…,m(m≥3)項循環(huán);分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為{bn},提出同(2)類似的問題((2)應(yīng)當(dāng)作為特例),并進行研究,你能得到什么樣的結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)(x∈R,x≠
1
a
)
滿足ax-f(x)=2bx+f(x),a≠0,f(1)=1;且使f(x)=2x成立的實數(shù)x只有一個.
(Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)若數(shù)列an滿足a1=
2
3
,an+1=f(an)
,bn=
1
an
-1,n∈N+
,證明數(shù)列bn是等比數(shù)列,并求出bn的通項公式;
(Ⅲ)在(Ⅱ)的條件下,證明:a1b1+a2b2+…+anbn<1,n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•上海一模)觀察數(shù)列:
①1,-1,1,-1,…;
②正整數(shù)依次被4除所得余數(shù)構(gòu)成的數(shù)列1,2,3,0,1,2,3,0,…;
③an=tan
3
,n=1,2,3,…
(1)對以上這些數(shù)列所共有的周期特征,請你類比周期函數(shù)的定義,為這類數(shù)列下一個周期數(shù)列的定義:對于數(shù)列{an},如果
存在正整數(shù)T
存在正整數(shù)T
,對于一切正整數(shù)n都滿足
an+T=an
an+T=an
成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列;
(2)若數(shù)列{an}滿足an+2=an+1-an,n∈N*,Sn為{an}的前n項和,且S2=2008,S3=2010,證明{an}為周期數(shù)列,并求S2008;
(3)若數(shù)列{an}的首項a1=p,p∈[0,
1
2
),且an+1=2an(1-an),n∈N*,判斷數(shù)列{an}是否為周期數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex+1,g(x)=(e-1)x+2(e是自然對數(shù)的底數(shù)).
(1)判斷函數(shù)H(x)=f(x)-g(x)零點的個數(shù),并說明理由;
(2)設(shè)數(shù)列{an}滿足:a1∈(0,1),且f(an)=g(an+1),n∈N*;
①求證:0<an<1;
②比較an與(e-1)an+1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x
ax+b
(a,b為常數(shù),a≠0),若f(1)=
1
3
,且f(x)=x只有一個實數(shù)根.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若數(shù)列{an}滿足關(guān)系式:an=f(an-1)(n∈N且n≥2),又a1=-
1
2005
,證明數(shù)列{
1
an
}是等差數(shù)列并求{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案