拋物線)的焦點為,已知點、為拋物線上的兩個動點,且滿足.過弦的中點作拋物線準線的垂線,垂足為,則的最大值為 (   )
A.B.1 C.D.2
A

試題分析:如下圖所示,設.
,,所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線焦點為,直線經(jīng)過點且與拋物線相交于,兩點

(Ⅰ)若線段的中點在直線上,求直線的方程;
(Ⅱ)若線段,求直線的方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動圓C經(jīng)過點(0,m) (m>0),且與直線y=-m相切,圓C被x軸截得弦長的最小值為1,記該圓的圓心的軌跡為E.
(Ⅰ)求曲線E的方程;
(Ⅱ)是否存在曲線C與曲線E的一個公共點,使它們在該點處有相同的切線?若存在,求出切線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若拋物線y2=8x上的點(x0,y0)到拋物線焦點的距離為3,則|y0|=(  ).
A.B.2C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

P為拋物線上任意一點,P在軸上的射影為Q,點M(4,5),則PQ與PM長度之和的最小值為         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線上到直線的距離最近的點的坐標(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線的焦點且與直線平行的直線方程是(  。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設拋物線C:的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0, 2),則C的方程為        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂點為原點,其焦點到直線的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.
(1) 求拋物線的方程;
(2) 當點為直線上的定點時,求直線的方程;
(3) 當點在直線上移動時,求的最小值.

查看答案和解析>>

同步練習冊答案