【題目】在極坐標(biāo)系中,點P的坐標(biāo)是,曲線C的方程為.以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,斜率為的直線l經(jīng)過點P.
(1)寫出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)若直線l和曲線C相交于兩點A,B,求的值.
【答案】(1)l:(t為參數(shù));C:;(2)4.
【解析】
(1)先求出曲線C的極坐標(biāo)方程,再化成直角坐標(biāo)方程,根據(jù)已知寫出直線的參數(shù)方程得解;
(2)將(t為參數(shù))代入得,再利用直線參數(shù)方程的幾何意義和韋達(dá)定理求解.
(1)解:由曲線C的極坐標(biāo)方程可得,
因此曲線C的直角坐標(biāo)方程為.
點P的直角坐標(biāo)為,直線l的傾斜角為,
所以直線l的參數(shù)方程為(t為參數(shù))
(2)將(t為參數(shù))代入得,
設(shè)A,B對應(yīng)參數(shù)分別為,,
則,,
根據(jù)直線參數(shù)方程t的幾何意義有,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】稠環(huán)芳香烴化合物中有不少是致癌物質(zhì),比如學(xué)生鐘愛的快餐油炸食品中會產(chǎn)生苯并芘,它是由一個苯環(huán)和一個芘分子結(jié)合而成的稠環(huán)芳香烴類化合物,長期食用會致癌.下面是一組稠環(huán)芳香烴的結(jié)構(gòu)簡式和分子式:
名稱 | 萘 | 蒽 | 并四苯 | … | 并n苯 |
結(jié)構(gòu)簡式 | … | … | |||
分子式 | … | … |
由此推斷并十苯的分子式為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求直線與曲線的普通方程;
(2)若直線與曲線交于、兩點,點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問題,為了了解聲音強度(單位:分貝)與聲音能量(單位:)之間的關(guān)系,將測量得到的聲音強度和聲音能量(=1,2…,10)數(shù)據(jù)作了初步處理,得到如圖散點圖及一些統(tǒng)計量的值.
45.7 | 0.51 | |||
5.1 |
表中,.
(1)根據(jù)散點圖判斷,與哪一個適宜作為聲音強度關(guān)于聲音能量的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)表中數(shù)據(jù),求聲音強度關(guān)于聲音能量的回歸方程;
(3)當(dāng)聲音強度大于60分貝時屬于噪音,會產(chǎn)生噪音污染,城市中某點共受到兩個聲源的影響,這兩個聲源的聲音能量分別是和,且.己知點的聲音能量等于聲音能量與之和.請根據(jù)(1)中的回歸方程,判斷點是否受到噪音污染的干擾,并說明理由.
附:對于一組數(shù)據(jù).其回歸直線的斜率和截距的最小二乘估計分別為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是偶函數(shù),且當(dāng)時,
(1)當(dāng)時,求的解析式;
(2)設(shè)函數(shù)在區(qū)間上的最大值為,試求的表達(dá)式;
(3)若方程有四個不同的實根,且它們成等差數(shù)列,試探求與滿足的條件.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com