【題目】某制瓶廠要制造一批軸截面如圖所示的瓶子,瓶子是按照統(tǒng)一規(guī)格設計的,瓶體上部為半球體,下部為圓柱體,并保持圓柱體的容積為.設圓柱體的底面半徑為x,圓柱體的高為h,瓶體的表面積為S.

(1)寫出S關于x的函數(shù)關系式;

(2)如何設計瓶子的尺寸(不考慮瓶壁的厚度),可以使表面積S最小,并求出最小值.

【答案】(1)S=x2+(x>0).(2)當圓柱體的底面半徑為1,可使表面積S取得最小值.

【解析】

(1)根據體積公式求出h,再根據表面積公式計算即可得到S與x的關系式,

(2)根據導數(shù)和函數(shù)的最值得關系即可求出.

:(1)據題意可知πx2h=3π,h=,

S=·4πx2+πx2+x·=x2+(x>0).

(2)S'=x-,

S'=0,x=1.列表如下:

x

(0,1)

1

(1,+∞)

S'

-

0

+

S

極小值

x=1,S取得極小值,且是最小值,

故當圓柱體的底面半徑為1,可使表面積S取得最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足a1= ,an+1=an2﹣an+1(n∈N*),則m= + +…+ 的整數(shù)部分是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={1,2,6},B={2,4},C={1,2,3,4},則(A∪B)∩C=( 。
A.{2}
B.{1,2,4}
C.{1,2,4,6}
D.{1,2,3,4,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,在其定義域內既是奇函數(shù)又是單調遞增的函數(shù)是(
A.y=﹣
B.y=3x﹣3x
C.y=x|x|
D.y=x3﹣x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橫梁的強度和它的矩形橫斷面的長的平方與寬的乘積成正比,要將直徑為d的圓木鋸成強度最大的橫梁,則橫斷面的長和寬分別為 ( )

A. d, d B. d, d

C. d, d D. d, d

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設向量 =( sinx,sinx), =(cosx,sinx),x∈(0, ).
(1)若| |=| |,求x的值;
(2)設函數(shù)f(x)= ,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某個體戶計劃經銷A,B兩種商品,據調查統(tǒng)計,當投資額為x(x≥0)萬元時,在經銷A,B商品中所獲得的收益分別為f(x)萬元與g(x)萬元,其中f(x)=a(x-1)+2,g(x)=6ln(xb)(a>0,b>0).已知投資額為零時收益為零.

(1)a,b的值;

(2)如果該個體戶準備投入5萬元經銷這兩種商品,請你幫他制定一個資金投入方案,使他能獲得最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,已知(a-3b)cos C=c(3cos B-cos A).

(1)求的值; (2)若c=a,求角C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為,曲線C2的極坐標方程為 (a>0).

(1)求直線l與曲線C1的交點的極坐標(ρ,θ)(ρ≥0,0≤θ<2π);

(2)若直線lC2相切,求a的值.

查看答案和解析>>

同步練習冊答案